Authors:
Emrah Altun Department of Mathematics, Bartin University, Bartin, 74100, Turkey

Search for other papers by Emrah Altun in
Current site
Google Scholar
PubMed
Close
,
Morad Alizadeh Department of Statistics, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr, 75169, Iran

Search for other papers by Morad Alizadeh in
Current site
Google Scholar
PubMed
Close
,
Haitham M. Yousof Department of Statistics, Mathematics and Insurance, Benha University, Egypt

Search for other papers by Haitham M. Yousof in
Current site
Google Scholar
PubMed
Close
, and
G. G. Hamedani Department of Mathematics, Statistics and Computer Science, Marquette University, USA

Search for other papers by G. G. Hamedani in
Current site
Google Scholar
PubMed
Close
Restricted access

This study proposes a new family of continuous distributions, called the Gudermannian generated family of distributions, based on the Gudermannian function. The statistical properties, including moments, incomplete moments and generating functions, are studied in detail. Simulation studies are performed to discuss and evaluate the maximum likelihood estimations of the model parameters. The regression model of the proposed family considering the heteroscedastic structure of the scale parameter is defined. Three applications on real data sets are implemented to convince the readers in favour of the proposed models.

  • [1]

    E. Altun. The generalized Gudermannian distribution: inference and volatility modelling. Statistics, 53(2):364386, 2019.

  • [2]

    A. Alzaatreh, C. Lee and F. Famoye. A new method for generating families of continuous distributions. Metron, 71:6379, 2013.

  • [3]

    G. M. Cordeiro and M. de Castro. A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81:883898, 2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    G. M. Cordeiro, E. M. M. Ortega and D. C. C. da Cunha. The exponentiated generalized class of distributions. J. Data Sci., 11:127, 2013.

  • [5]

    G. M. Cordeiro, M. Alizadeh and E. M. Ortega. The exponentiated half-logistic family of distributions: Properties and applications. Journal of Probability and Statistics, 2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    G. M. Cordeiro, M. Alizadeh, G. Ozel, B. Hosseini, E. M. M. Ortega and E. Altun. The general-ized odd log-logistic family of distributions: properties, regression models and applications. Journal of Statistical Computation and Simulation, 87(5):908932, 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    J. N. D. Cruz, E. M. Ortega and G. M. Cordeiro. The log-odd log-logistic Weibull regres-sion model: modelling, estimation, influence diagnostics and residual analysis. Journal of statistical computation and simulation, 86(8):15161538, 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    W. Glänzel. A characterization theorem based on truncated moments and its application to some distribution families. Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, 1987, 7584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    W. Glänzel. Some consequences of a characterization theorem based on truncated moments. Statistics: A Journal of Theoretical and Applied Statistics, 21(4):613618, 1990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [10]

    I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals. Series, and Products. Academic Press, 2007.

  • [11]

    J. U. Gleaton and J. D. Lynch. Properties of generalized log-logistic families of lifetime distributions. Journal of Probability and Statistical Science, 4(1):5164, 2006.

    • Search Google Scholar
    • Export Citation
  • [12]

    C. A. McGilchrist and C. W. Aisbett. Regression with frailty in survival analysis. Biometrics, 461466, 1991.

  • [13]

    W. Q. Meeker and L. A. Escobar. Statistical methods for reliability data. New York: John Wiley, 1998.

  • [14]

    F. Prataviera, E. M. Ortega, G. M. Cordeiro and A. D. S. Braga. The heteroscedastic odd log-logistic generalized gamma regression model for censored data. Communications in Statistics-Simulation and Computation, 48(6):18151839, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    K. Xu, M. Xie, L. C. Tang and S. L. Ho. Application of neural networks in forecasting engine systems reliability. Applied Soft Computing, 2(4):255268, 2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16]

    H. M. Yousof, E. Altun, M. Rasekhi, M. Alizadeh, G. G. Hamedani and M. M. Ali. A new life-time model with regression models, characterizations and applications. Communications in Statistics-Simulation and Computation, 48(1):264286, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)