Authors:
Mehdi Makhul Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

Search for other papers by Mehdi Makhul in
Current site
Google Scholar
PubMed
Close
and
Rom Pinchasi Mathematics Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

Search for other papers by Rom Pinchasi in
Current site
Google Scholar
PubMed
Close
Restricted access

Let P be a set of n points in general position in the plane. Let R be a set of points disjoint from P such that for every x, y € P the line through x and y contains a point in R. We show that if R<32n and PR is contained in a cubic curve c in the plane, then P has a special property with respect to the natural group structure on c. That is, P is contained in a coset of a subgroup H of c of cardinality at most |R|.

We use the same approach to show a similar result in the case where each of B and G is a set of n points in general position in the plane and every line through a point in B and a point in G passes through a point in R. This provides a partial answer to a problem of Karasev.

The bound R<32n is best possible at least for part of our results. Our extremal constructions provide a counterexample to an old conjecture attributed to Jamison about point sets that determine few directions.

  • [1]

    E. Ackerman, K. Buchin, C. Knauer, R. Pinchasi and G. Rote. There are not too many Magic Configurations. Discrete Comput. Geom., 39(1—3):316, 2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    R. Balasubramanian and P. P. Pandey. On a theorem of Deshouillers and Freiman. European J Combin. 70:284-296, 2018.

  • [3]

    R. Bix. Conics and Cubics: A Concrete Introduction to Algebraic Curves. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (2006).

    • Search Google Scholar
    • Export Citation
  • [4]

    A. Blokhuis, G. Marino and F. Mazzocca, Generalized hyperfocused arcs in PG(2, p). J. Combin. Des., 22(12):506-513, 2014.

  • [5]

    P. Erdős and G. Purdy. Some combinatorial problems in the plane. J. Combinatorial Theory, Ser. A, 25:205-210, 1978.

  • [6]

    G. A. Freiman. Groups and the inverse problems of additive number theory. Number-theoretic studies in the Markov spectrum and in the structural theory of set addition pp. 175-183. Kalinin. Gos. Univ., Moscow, (1973). In Russian.

    • Search Google Scholar
    • Export Citation
  • [7]

    B. Green and T. Tao. Onsets defining few ordinary lines. Discrete Comput. Geom., 50(2):409-468, 2013.

  • [8]

    R. E. Jamison. Few slopes without collinearity. Discrete Math., 60:199-206, 1986.

  • [9]

    R. Karasev. Residues and the combinatorial Nullstellensatz. Period. Math. Hungar., 78(2):157-165, 2019.

  • [10]

    Ch. Keller and R. Pinchasi. On sets of n points in general position that determine lines that can be pierced by n points. Discrete Comput. Geom., 64(2):382-385, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    V. F. Lev. Restricted set addition in groups. I. The classical setting. J. London Math. Soc. (2), 62(1):27-40, 2000.

  • [12]

    H. B. Mann. Addition theorems: The addition theorems of group theory and number theory. Interscience Publishers John Wiley & Sons New York-London-Sydney (1965).

    • Search Google Scholar
    • Export Citation
  • [13]

    L. Milicevic. Classification theorem for strong triangle blocking arrangements. Publ. Inst. Math. (Beograd) (N.S.), 107(121):1-36, 2020.

  • [14]

    U. S. R. Murty. How many magic configurations are there? American Mathematical Monthly, 78(9):1000-1002, (1971).

  • [15]

    C. Pilatte. On the sets of n points forming n +1 directions. Elec. J. of Combin., 27(1), 2020. See also: arXiv:1811.01055, 2018.

  • [16]

    C. Pilatte. Addendum to the paper “On the sets of n points forming n +1 directions”. arXiv preprint arXiv:1811.01055, 2021.

  • [17]

    R. Pinchasi and A. Polyanskii. A one-page solution of a problem of Erdős and Purdy. Discrete Comput. Geom, 64(2):382-385, 2020.

  • [18]

    P. R. Scott. On the sets of directions determined by n points. Amer Math. Monthly, 77:502-505, 1970.

  • [19]

    P. Ungar. 2n noncollinear points determine at least 2n directions. J. Combin. Theory, Ser. A, 33:343-347, 1982.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)