Authors:
Mehdi Makhul Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

Search for other papers by Mehdi Makhul in
Current site
Google Scholar
PubMed
Close
and
Rom Pinchasi Mathematics Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

Search for other papers by Rom Pinchasi in
Current site
Google Scholar
PubMed
Close
Restricted access

Let P be a set of n points in general position in the plane. Let R be a set of points disjoint from P such that for every x, y € P the line through x and y contains a point in R. We show that if R<32n and PR is contained in a cubic curve c in the plane, then P has a special property with respect to the natural group structure on c. That is, P is contained in a coset of a subgroup H of c of cardinality at most |R|.

We use the same approach to show a similar result in the case where each of B and G is a set of n points in general position in the plane and every line through a point in B and a point in G passes through a point in R. This provides a partial answer to a problem of Karasev.

The bound R<32n is best possible at least for part of our results. Our extremal constructions provide a counterexample to an old conjecture attributed to Jamison about point sets that determine few directions.

  • [1]

    E. Ackerman, K. Buchin, C. Knauer, R. Pinchasi and G. Rote. There are not too many Magic Configurations. Discrete Comput. Geom., 39(1—3):316, 2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    R. Balasubramanian and P. P. Pandey. On a theorem of Deshouillers and Freiman. European J Combin. 70:284-296, 2018.

  • [3]

    R. Bix. Conics and Cubics: A Concrete Introduction to Algebraic Curves. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (2006).

    • Search Google Scholar
    • Export Citation
  • [4]

    A. Blokhuis, G. Marino and F. Mazzocca, Generalized hyperfocused arcs in PG(2, p). J. Combin. Des., 22(12):506-513, 2014.

  • [5]

    P. Erdős and G. Purdy. Some combinatorial problems in the plane. J. Combinatorial Theory, Ser. A, 25:205-210, 1978.

  • [6]

    G. A. Freiman. Groups and the inverse problems of additive number theory. Number-theoretic studies in the Markov spectrum and in the structural theory of set addition pp. 175-183. Kalinin. Gos. Univ., Moscow, (1973). In Russian.

    • Search Google Scholar
    • Export Citation
  • [7]

    B. Green and T. Tao. Onsets defining few ordinary lines. Discrete Comput. Geom., 50(2):409-468, 2013.

  • [8]

    R. E. Jamison. Few slopes without collinearity. Discrete Math., 60:199-206, 1986.

  • [9]

    R. Karasev. Residues and the combinatorial Nullstellensatz. Period. Math. Hungar., 78(2):157-165, 2019.

  • [10]

    Ch. Keller and R. Pinchasi. On sets of n points in general position that determine lines that can be pierced by n points. Discrete Comput. Geom., 64(2):382-385, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    V. F. Lev. Restricted set addition in groups. I. The classical setting. J. London Math. Soc. (2), 62(1):27-40, 2000.

  • [12]

    H. B. Mann. Addition theorems: The addition theorems of group theory and number theory. Interscience Publishers John Wiley & Sons New York-London-Sydney (1965).

    • Search Google Scholar
    • Export Citation
  • [13]

    L. Milicevic. Classification theorem for strong triangle blocking arrangements. Publ. Inst. Math. (Beograd) (N.S.), 107(121):1-36, 2020.

  • [14]

    U. S. R. Murty. How many magic configurations are there? American Mathematical Monthly, 78(9):1000-1002, (1971).

  • [15]

    C. Pilatte. On the sets of n points forming n +1 directions. Elec. J. of Combin., 27(1), 2020. See also: arXiv:1811.01055, 2018.

  • [16]

    C. Pilatte. Addendum to the paper “On the sets of n points forming n +1 directions”. arXiv preprint arXiv:1811.01055, 2021.

  • [17]

    R. Pinchasi and A. Polyanskii. A one-page solution of a problem of Erdős and Purdy. Discrete Comput. Geom, 64(2):382-385, 2020.

  • [18]

    P. R. Scott. On the sets of directions determined by n points. Amer Math. Monthly, 77:502-505, 1970.

  • [19]

    P. Ungar. 2n noncollinear points determine at least 2n directions. J. Combin. Theory, Ser. A, 33:343-347, 1982.

  • Collapse
  • Expand

The LaTeX template package can be downloaded from HERE.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2022  
Web of Science  
Total Cites
WoS
570
Journal Impact Factor 0.7
Rank by Impact Factor

Mathematics (Q3)

Impact Factor
without
Journal Self Cites
0.7
5 Year
Impact Factor
0.8
Journal Citation Indicator 0.65
Rank by Journal Citation Indicator

Mathematics (Q2)

Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0.351
Scimago Quartile Score

Mathematics (Q3)

Scopus  
Scopus
Cite Score
1.8
Scopus
CIte Score Rank
General Mathematics 128/387 (67th PCTL)
Scopus
SNIP
1.276

2021  
Web of Science  
Total Cites
WoS
589
Journal Impact Factor 0,739
Rank by Impact Factor Mathematics 229/332
Impact Factor
without
Journal Self Cites
0,710
5 Year
Impact Factor
0,654
Journal Citation Indicator 0,57
Rank by Journal Citation Indicator Mathematics 287/474
Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0,265
Scimago Quartile Score Mathematics (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
General Mathematics 193/391 (Q2)
Scopus
SNIP
0,746

2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 708 EUR / 860 USD
Print + online subscription: 796 EUR / 970 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)