Authors:
Jaime Muñoz Masqué Institute of Information Security, CSIC, C/ Serrano 144, 28006-Madrid, Spain

Search for other papers by Jaime Muñoz Masqué in
Current site
Google Scholar
PubMed
Close
,
María Eugenia Rosado María Departament of Applied Mathematics, ETSAM, UPM, Avda. Juan de Herrera 4, 28040-Madrid, Spain

Search for other papers by María Eugenia Rosado María in
Current site
Google Scholar
PubMed
Close
, and
Ignacio Sánchez Rodríguez Departament of Geometry and Topology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071-Granada, Spain

Search for other papers by Ignacio Sánchez Rodríguez in
Current site
Google Scholar
PubMed
Close
Restricted access

Criteria for a diffeomorphism of a smooth manifold M to be lifted to a linear automorphism of a given real vector bundle p : V → M, are stated. Examples are included and the metric and complex vector-bundle cases are also considered.

  • [1]

    M. Arkowitz and Ken-ichi Maruyama. Self-homotopy equivalences which induce the iden-tity on homology, cohomology or homotopy groups. Topology Appl., 87(2):133154, 1998.

    • Search Google Scholar
    • Export Citation
  • [2]

    H. J. Baues. On the group of homotopy equivalences of a manifold. Trans. Amer. Math. Soc., 348(12):47374773, 1996.

  • [3]

    D. Betounes. The geometry of gauge-particle field interaction: a generalization of Utiyama’s theorem. J. Geom. Phys., 6:107125, 1989.

    • Search Google Scholar
    • Export Citation
  • [4]

    D. Bleecker. Gauge Theory and Variational Principles. Addison-Wesley Publishing Com- pany, Inc., Massachusetts, 1981.

  • [5]

    F. Ding and H. Geiges. The diffeotopy group of S1 × S2 via contact topology. Compositio Math., 146:10961112, 2010.

  • [6]

    A. Douady and M. Lazard. Espaces fibrés en algèbres de Lie et en groupes. Invent. Math., 1:133151, 1966.

  • [7]

    D. B. A. Epstein and W. P. Thurston. Transformation groups and natural bundles. Proc. Lon-don Math. Soc., 38:219236, 1979.

  • [8]

    C. Godbillon. Éléments de Topologie Algébrique. Hermann, Paris, 1971.

  • [9]

    A. Grothendieck. A General Theory of Fibre Spaces with Structure Sheaf. Report No. 4, second printing, University of Kansas, 1965.

  • [10]

    V. Guillemin and S. Sternberg. Symplectic techniques in physics. Cambridge University Press, Cambridge, U. K., 1984.

  • [11]

    D. Husemoller. Fibre Bundles. Springer Verlag, New York, Inc., 1994.

  • [12]

    S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, Volumes I, II. Inter- science Publishers, John Wiley & Sons, Inc., New York, London, 1963, 1969.

    • Search Google Scholar
    • Export Citation
  • [13]

    I. Kolář, P. W. Michor and J. Slovák. Natural Operations in Differential Geometry. Springer- Verlag, Berlin Heidelberg, 1993.

  • [14]

    J. L. Koszul. Lectures on Fibre Bundles and Differential Geometry. Lectures on Mathematics and Physics no. 20, Tata Institute of Fundamental Research, Bombay, India, 1965.

    • Search Google Scholar
    • Export Citation
  • [15]

    A. Kriegl and P. W. Michor. The Convenient Setting of Global Analysis. Mathematical Sur- veys and Monographs, 53. American Mathematical Society, Providence, RI, 1997.

    • Search Google Scholar
    • Export Citation
  • [16]

    A. Kriegl, P. W. Michor and A. Rainer. An exotic zoo of diffeomorphism groups on ℝn. Ann. Global Anal. Geom., 47(2):179222, 2015.

  • [17]

    P. Lecomte. Sur l’algèbre de Lie des sections d’un fibré en algèbres de Lie, Ann. Inst. Fourier (Grenoble), 30:3550, 1980.

  • [18]

    P. Lecomte. Note on the linear endomorphisms of a vector bundle. Manuscripta Math., 32:231238, 1980.

  • [19]

    P. Lecomte. On the infinitesimal automorphisms of a vector bundle. J. Math. Pures Appl., 60:229239, 1981.

  • [20]

    P. B. A. Lecomte and C. Roger. Déformations de l’algèbre des automorphismes d’un fibré principal. Proc. Kon. Nederl. Akad. Wetensch., Series A, 92:457463, 1989.

    • Search Google Scholar
    • Export Citation
  • [21]

    A. J. Ledger and K. Yano. Almost complex structures on tensor bundles. J. Differential Geom., 1:355368, 1967.

  • [22]

    K. B. Marathe and G. Martucci. The mathematical foundations of gauge theories. North- Holland, Amsterdam, the Netherlands, 1992.

  • [23]

    J. Mickelsson. Current Algebras and Groups. Plenum Press, New York, 1989.

  • [24]

    J. W. Milnor and J. D. Stasheff. Characteristic Classes. Annals of Mathematics Studies 76, Princeton University Press, Princeton, NJ, 1974.

    • Search Google Scholar
    • Export Citation
  • [25]

    K.-P. Mok. Lifts of vector fields to tensor bundles, Geom. Dedicata, 8:6167, 1979.

  • [26]

    N. Moore. Algebraic vector bundles over the 2-sphere. Inventiones Math., 14:167172, 1971.

  • [27]

    R. S. Palais and Ch.-L. Terng. Natural bundles have finite order. Topology, 16:271277, 1977.

  • [28]

    P. Pavešić. On self-maps which induce identity automorphisms of homology groups. Glas-gow Math. J., 43(2):177184, 2001.

  • [29]

    D. Ruberman. An obstruction to smooth isotopy in dimenson 4. Mathematical Research Letters, 5:743758, 1998.

  • [30]

    P. Sankaran and S. Sarkar. Degrees of maps between Grassmann manifolds. Osaka J. Math., 46(4):11431161, 2009.

  • [31]

    E. H. Spanier. Algebraic Topology. McGraw-Hill, Inc., 1966.

  • [32]

    Ch.-L. Terng. Natural vector bundles and natural differential operators. Amer. J. Math., 100:775828, 1978.

  • [33]

    K. Yano and A. J. Ledger. Linear connections on tangent bundles. J. London Math. Soc., 39:495500, 1964.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)