Criteria for a diffeomorphism of a smooth manifold M to be lifted to a linear automorphism of a given real vector bundle p : V → M, are stated. Examples are included and the metric and complex vector-bundle cases are also considered.
M. Arkowitz and Ken-ichi Maruyama. Self-homotopy equivalences which induce the iden-tity on homology, cohomology or homotopy groups. Topology Appl., 87(2):133–154, 1998.
H. J. Baues. On the group of homotopy equivalences of a manifold. Trans. Amer. Math. Soc., 348(12):4737–4773, 1996.
D. Betounes. The geometry of gauge-particle field interaction: a generalization of Utiyama’s theorem. J. Geom. Phys., 6:107–125, 1989.
D. Bleecker. Gauge Theory and Variational Principles. Addison-Wesley Publishing Com- pany, Inc., Massachusetts, 1981.
F. Ding and H. Geiges. The diffeotopy group of S1 × S2 via contact topology. Compositio Math., 146:1096–1112, 2010.
A. Douady and M. Lazard. Espaces fibrés en algèbres de Lie et en groupes. Invent. Math., 1:133–151, 1966.
D. B. A. Epstein and W. P. Thurston. Transformation groups and natural bundles. Proc. Lon-don Math. Soc., 38:219–236, 1979.
C. Godbillon. Éléments de Topologie Algébrique. Hermann, Paris, 1971.
A. Grothendieck. A General Theory of Fibre Spaces with Structure Sheaf. Report No. 4, second printing, University of Kansas, 1965.
V. Guillemin and S. Sternberg. Symplectic techniques in physics. Cambridge University Press, Cambridge, U. K., 1984.
D. Husemoller. Fibre Bundles. Springer Verlag, New York, Inc., 1994.
S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, Volumes I, II. Inter- science Publishers, John Wiley & Sons, Inc., New York, London, 1963, 1969.
I. Kolář, P. W. Michor and J. Slovák. Natural Operations in Differential Geometry. Springer- Verlag, Berlin Heidelberg, 1993.
J. L. Koszul. Lectures on Fibre Bundles and Differential Geometry. Lectures on Mathematics and Physics no. 20, Tata Institute of Fundamental Research, Bombay, India, 1965.
A. Kriegl and P. W. Michor. The Convenient Setting of Global Analysis. Mathematical Sur- veys and Monographs, 53. American Mathematical Society, Providence, RI, 1997.
A. Kriegl, P. W. Michor and A. Rainer. An exotic zoo of diffeomorphism groups on ℝn. Ann. Global Anal. Geom., 47(2):179–222, 2015.
P. Lecomte. Sur l’algèbre de Lie des sections d’un fibré en algèbres de Lie, Ann. Inst. Fourier (Grenoble), 30:35–50, 1980.
P. Lecomte. Note on the linear endomorphisms of a vector bundle. Manuscripta Math., 32:231–238, 1980.
P. Lecomte. On the infinitesimal automorphisms of a vector bundle. J. Math. Pures Appl., 60:229–239, 1981.
P. B. A. Lecomte and C. Roger. Déformations de l’algèbre des automorphismes d’un fibré principal. Proc. Kon. Nederl. Akad. Wetensch., Series A, 92:457–463, 1989.
A. J. Ledger and K. Yano. Almost complex structures on tensor bundles. J. Differential Geom., 1:355–368, 1967.
K. B. Marathe and G. Martucci. The mathematical foundations of gauge theories. North- Holland, Amsterdam, the Netherlands, 1992.
J. Mickelsson. Current Algebras and Groups. Plenum Press, New York, 1989.
J. W. Milnor and J. D. Stasheff. Characteristic Classes. Annals of Mathematics Studies 76, Princeton University Press, Princeton, NJ, 1974.
K.-P. Mok. Lifts of vector fields to tensor bundles, Geom. Dedicata, 8:61–67, 1979.
N. Moore. Algebraic vector bundles over the 2-sphere. Inventiones Math., 14:167–172, 1971.
R. S. Palais and Ch.-L. Terng. Natural bundles have finite order. Topology, 16:271–277, 1977.
P. Pavešić. On self-maps which induce identity automorphisms of homology groups. Glas-gow Math. J., 43(2):177–184, 2001.
D. Ruberman. An obstruction to smooth isotopy in dimenson 4. Mathematical Research Letters, 5:743–758, 1998.
P. Sankaran and S. Sarkar. Degrees of maps between Grassmann manifolds. Osaka J. Math., 46(4):1143–1161, 2009.
Ch.-L. Terng. Natural vector bundles and natural differential operators. Amer. J. Math., 100:775–828, 1978.
K. Yano and A. J. Ledger. Linear connections on tangent bundles. J. London Math. Soc., 39:495–500, 1964.