Extending Blaschke and Lebesgue’s classical result in the Euclidean plane, it has been recently proved in spherical and the hyperbolic cases, as well, that Reuleaux triangles have the minimal area among convex domains of constant width D. We prove an essentially optimal stability version of this statement in each of the three types of surfaces of constant curvature. In addition, we summarize the fundamental properties of convex bodies of constant width in spaces of constant curvature, and provide a characterization in the hyperbolic case in terms of horospheres.
M. A. Alfonseca, M. Cordier and D. I. Florentin. Uniqueness results for bodies of constant width in the hyperbolic plane. Adv. Geom., 21:391–400, 2021.
P. V. Araujo. Minimum area of a set of constant width in the hyperbolic plane. Geom. Ded-icata, 64:41–53, 1997.
Y. Benyamini. Two point symmetrization, the isoperimetric inequality on the sphere and some applications. Longhorn Notes, Univ. of Texas, Texas Funct. Anal. Seminar, 53–76, 1983–1984.
K. Bezdek. A new look at the Blaschke-Leichtweiss theorem. arXiv preprint arXiv:2101.00538, 2021.
W. Blaschke. Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. (Ger-man) Math. Ann., 76:504–513, 1915.
V. Bögelein, F. Duzaar and C. Scheven. A sharp quantitative isoperimetric inequality in hyperbolic n-space. Calc. Var. 54, 3967–4017, 2015.
V. Bögelein, F. Duzaar and N. Fusco. A quantitative isoperimetric inequality on the sphere. Adv. Calc. Var., 10:223–265, 2017.
K. Böröczky Jr, . Finite packing and covering. Cambridge, 2004.
K. J. Böröczky and Á. Sagmeister. The isodiametric problem on the sphere and in the hyperbolic space. Acta Math. Hung., 160:13–32, 2020.
G. D. Chakerian. Sets of constant width. Pacific J. Math., 19:13–21, 1966.
B. V. Dekster. Completeness and constant width in spherical and hyperbolic spaces. Acta Math. Hungar., 67(4):289–300, 1995.
B. V. Dekster. The Jung theorem for spherical and hyperbolic spaces. Acta Math. Hungar., 67(4):315–331, 1995.
V. I. Diskant. Stability of the solution of a Minkowski equation. Sibirsk. Mat. Ž., 14:669–673, 1973. (In Russian. Eng. transl. Siberian Math. J., 14:466–473, 1974.)
H. G. Eggleston. A proof of Blaschke’s theorem on the Reuleaux triangle. Quart. J. Math. Oxford Ser., 3:296–297, 1952.
A. Figalli, F. Maggi and A. Pratelli. A refined Brunn–Minkowski inequality for convex sets. Annales de IHP (C) Non Linear Analysis, 26:2511–2519, 2009.
A. Figalli, F. Maggi and A. Pratelli. A mass transportation approach to quantitative iso-perimetric inequalities. Inventiones Mathematicae, 182(1):167–211, 2010.
J. P. Fillmore. Barbier’s theorem in the Lobachevsky plane. Proc. Amer. Math. Soc., 24:705–709, 1970.
N. Fusco, F. Maggi and A. Pratelli. The sharp quantitative isoperimetric inequality. Ann. of Math., 168:941–980, 2008.
E. Gallego, A. Reventos, G. Solanes and E. Teufel. Width of convex bodies in spaces of constant curvature. Manuscripta Math., 126:115–134, 2008.
H. Groemer. On complete convex bodies. Geom. Dedicata, 20(3):319–334, 1986.
H. Groemer. On the Brunn–Minkowski theorem. Geom. Dedicata, 27:357–371, 1988.
H. Groemer. Stability of geometric inequalities. In: Handbook of convex geometry (P. M. Gruber, J. M. Wills, eds), North-Holland, Amsterdam, 1993, 125–150.
P. M. Gruber: Convex and discrete geometry. Springer, Berlin, 2007.
M. A. Hernández Cifre and A. R. Martínez Fernández. The isodiametric problem and other inequalities in the constant curvature 2-spaces, RACSAM, 109:315–325, 2015.
Á. G. Horváth. Diameter, width and thickness in the hyperbolic plane. J. Geom., 112.47, 2021.
J. Jerónimo-Castro and F. G. Jimenez-Lopez. A characterization of the hyperbolic disc among constant width bodies. Bull. Korean Math. Soc., 54:2053–2063, 2017.
A. V. Kolesnikov and E. Milman. Local Lp -Brunn–Minkowski inequalities for p < 1. Memoirs of the American Mathematical Society, accepted.
M. Lassak. Spherical geometry – a survey on width and thickness of convex bodies. arXiv preprint arXiv:2012.13652 (2020)
M. Lassak and M. Musielak. Spherical bodies of constant width. Aequationes mathemat-icae, 92:627–640, 2018.
H. Lebesgue. Sur le problème des isopérimètres et sur les domaines de largeur constante. Bull. Soc. Math. France, 7:72–76, 1914.
K. Leichtweiss. Curves of constant width in the non-Euclidean geometry, Abh. Math. Sem. Univ. Hamburg, 75:257–284, 2005.
E. Schmidt. Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionszahl. Math. Z., 49:1–109, 1943/44.
E. Schmidt. Die Brunn–Minkowskische Ungleichung und ihr Spiegelbild sowie die iso-perimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geomet-rie I. Math. Nachr., 1(2–3):81–157, 1948.
E. Schmidt. Die Brunn–Minkowskische Ungleichung und ihr Spiegelbild sowie die iso-perimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geomet-rie II. Math. Nachr., 2(3–4):171–244, 1949.
R. Schneider. Convex bodies: the Brunn–Minkowski Theory. Cambridge University Press, Cambridge, 2014.
O. Schramm. On the volume of sets having constant width. Israel J. Math., 63:178–182, 1988.
O. Schramm. Illuminating sets of constant width. Mathematika, 35:180–189, 1988.
E. B. Vinberg (ed). Geometry II: Spaces of Constant Curvature, Springer, 1993.