We prove that for any collection F of n ≥ 2 pairwise disjoint compact convex sets in the plane there is a pair of sets A and B in F such that any line that separates A from B separates either A or B from a subcollection of F with at least n/18 sets.
H. Edelsbrunner, A. D. Robison and X. J. Shen. Covering convex sets with non-overlapping polygons. Discrete Mathematics, 81:153-164,1990.
L. Fejes Tóth. Illumination of convex discs. Acta Mathematica Academiae Scientiarum Hungaricae, 29(3-4):355-360, 1997.
R. Hope and M. Katchalski. Separating plane convex sets. Mathematica Scandinavica 66(1):44-46, 1990.
E. Rivera-Campo and J. Törőcsik. On separation of plane convex sets. European Journal of Combinatorics 14:113-116, 1993.
H. Tverberg. A separation property of plane convex sets. Mathematica Scandinavica 45:255-260, 1979.