Author:
Panna Gehér Eötvös Loránd University, Budapest

Search for other papers by Panna Gehér in
Current site
Google Scholar
PubMed
Close
Restricted access

The famous Hadwiger–Nelson problem asks for the minimum number of colors needed to color the points of the Euclidean plane so that no two points unit distance apart are assigned the same color. In this note we consider a variant of the problem in Minkowski metric planes, where the unit circle is a regular polygon of even and at most 22 vertices. We present a simple lattice–sublattice coloring scheme that uses 6 colors, proving that the chromatic number of the Minkowski planes above are at most 6. This result is new for regular polygons having more than 8 vertices.

  • [1]

    J. Burkert and P. Johnson. Szlam’s lemma: mutant offspring of a Euclidean Ramsey problem from 1973, with numerous applications, Ramsey theory, Birkhäuser, Boston, MA., 2011, 97113.

    • Search Google Scholar
    • Export Citation
  • [2]

    K. B. Chilakamarri. Unit-distance graphs in Minkowski metric spaces. Geometriae Ded-icata, 37(3):345356, 1991.

  • [3]

    D. Coulson. A 15-colouring of 3-space omitting distance one. Discrete Mathematics, 256:8390, 2001.

  • [4]

    Gy. Csizmadia and G. Tóth. Note on a Ramsey-type problem in geometry. Journal of Com-binatorial Theory, Series A, 65(2):302306, 1994.

    • Search Google Scholar
    • Export Citation
  • [5]

    P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and E. G. Straus. Euclidean Ramsey Theorems II. Colloq. Math. Soc. J. Bolyai vol. 10. Infinite and Finite Sets. North-Holland, Amsterdam, 1975, 529557.

    • Search Google Scholar
    • Export Citation
  • [6]

    G. Exoo, D. Fisher, and D. Ismailescu. The chromatic number of the Minkowski plane–the regular polygon case. Geombinatorics 31:4967, 2021.

    • Search Google Scholar
    • Export Citation
  • [7]

    G. Exoo and D. Ismailescu. The chromatic number of the plane is at least 5: A new proof. Discrete & Computational Geometry, 111, 2020.

    • Search Google Scholar
    • Export Citation
  • [8]

    P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combin-atorica, 1(4):357368, 1981.

  • [9]

    A. de Grey. The chromatic number of the plane is at least 5. Geombinatorics, 28:518, 2018.

  • [10]

    H. Hadwiger, H. DeBrunner, and V. Klee. Combinatorial Geometry in the Plane. Holt, Rine-hart 6 Winston, New York, 1964.

  • [11]

    P. Johnson and A. D. Szlam. A new connection between two kinds of Euclidean coloring problems. Geombinatorics, 10(4):172178, 2001.

  • [12]

    R. Juhász. Ramsey type theorems in the plane. Journal of Combinatorial Theory, Series A, 27(2):152160, 1979.

  • [13]

    C. Krizan. Euclidean Szlam Numbers. PhD Dissertation, Auburn University, 2016.

  • [14]

    A. Kupavskii. On the chromatic number of Rn with an arbitrary norm. Discrete Math., 311(6):437440, 2011.

  • [15]

    D. G. Larman and C. A. Rogers. The realization of distances within sets in Euclidean space. Mathematika, 19(1):124, 1972.

  • [16]

    A. Li, M. Plummer, A. Shapiro, and K. Weatherspoon. An Assortment of Euclidean Coloring Problems, 2021.

  • [17]

    L. Moser and W. Moser. Solution to problem 10. Can. Math. Bull., 4:187189, 1961.

  • [18]

    J. Parts. Graph minimization, focusing on the example of 5-chromatic unitdistance graphs in the plane. Geombinatorics, 29(3):137166, 2020.

    • Search Google Scholar
    • Export Citation
  • [19]

    R. Radoičić and G. Tóth. Note on the chromatic number of the space. Discrete and compu-tational geometry. Springer, Berlin, Heidelberg, 2003, 695698.

    • Search Google Scholar
    • Export Citation
  • [20]

    A. Soifer. The mathematical coloring book: Mathematics of coloring and the colorful life of its creators. Springer Science & Business Media, 2008.

    • Search Google Scholar
    • Export Citation
  • [21]

    A. D. Szlam. Monochromatic translates of configurations in the plane. Journal of Combin-atorial Theory, Series A, 93(1):173176, 2001.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)