Authors:
Endre Makai Jr. Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network (ELKH), H-1364 Budapest, P.O. Box 127, Hungary

Search for other papers by Endre Makai Jr. in
Current site
Google Scholar
PubMed
Close
and
Tibor Tarnai Budapest University of Technology and Economics, Department of Structural Mechanics, H-1521 Budapest, Műegyetem rkp. 3, Hungary

Search for other papers by Tibor Tarnai in
Current site
Google Scholar
PubMed
Close
Restricted access

The motions of a bar structure consisting of two congruent tetrahedra are investigated, whose edges in their basic position are the face diagonals of a rectangular parallelepiped. The constraint of the motion is the following: the originally intersecting edges have to remain coplanar. All finite motions of our bar structure are determined. This generalizes our earlier work, where we did the same for the case when the rectangular parallelepiped was a cube. At the end of the paper we point out three further possibilities to generalize the question about the cube, and give for them examples of finite motions.

  • [1]

    H.-W. Chen. Kinematics and introduction to dynamics of a movable pair of tetrahedra. M. Eng. Thesis, Dept. Mech. Engng., McGill University, Montreal, Canada, 1991.

    • Search Google Scholar
    • Export Citation
  • [2]

    R. B. Fuller. Synergetics. Exploration in the geometry of thinking. Macmillan, New York, 1975.

  • [3]

    W. Hurewicz and H. Wallman. Dimension theory. Princeton Math. Series, Vol. 4, Princeton Univ. Press, Princeton, N. J., 1941.

  • [4]

    A. Hyder and P. J. Zsombor-Murray. Design, mobility analysis and animation of a double equilateral tetrahedral mechanism. CIM-89-15 McRCIM Internal Report, McGill University, Montreal, Canada, 1989.

    • Search Google Scholar
    • Export Citation
  • [5]

    A. Hyder and P. J. Zsombor-Murray. Design, mobility analysis and animation of a double equilateral tetrahedral mechanism. Proc. Internat. Symp. on Robotics and Manufacturing. ASME Press series, Vol. 3, ISSN 1052–4150, 1990, 4956.

    • Search Google Scholar
    • Export Citation
  • [6]

    A. Hyder and P. J. Zsombor-Murray. An equilateral tetrahedral mechanism. Robotics and Autonomous Systems, 9:227236, 1992.

  • [7]

    F. Kovács, F. I. Hegedűs, and T. Tarnai. Movable pairs of regular polyhedra. Structural Morphology towards the New Millenium, Internat. Colloq. Univ. Nottingham, Aug. 15–17, 1997. (Eds. J. C. Chilton, B. S. Choo, W. J. Lewis, O. Popović), Univ. Nottingham, School of Architecture, Nottingham, UK, 1997, 123129.

    • Search Google Scholar
    • Export Citation
  • [8]

    E. Makai, Jr. and T. Tarnai. Overconstrained sliding mechanisms. IUTAM-IASS Symp. on Deployable Structures: Theory and Appl., Proc. IUTAM Symp., Cambridge, UK, 6-9 Sept. 1998. (Eds. S. Pellegrino, S. D. Guest), Kluwer, Dordrecht etc., 2000, 261270.

    • Search Google Scholar
    • Export Citation
  • [9]

    J. Pedersen and T. Tarnai. Mysterious movable models. Math. Intelligencer, 34(3):6266, 2012.

  • [10]

    H. Stachel. Ein bewegliches Tetraederpaar. (A movable pair of tetrahedra, German.) Elem. Math., 43:6775, 1988.

  • [11]

    T. Tarnai and E. Makai. Physically inadmissible motions of a movable pair of tetrahedra. Proc. Third Internat. Conf. on Engineering Graphics and Descriptive Geometry (eds. S. M. Slaby and H. Stachel), Vol. 2, Technical Univ., Vienna 1988, 264271.

    • Search Google Scholar
    • Export Citation
  • [12]

    T. Tarnai and E. Makai. A movable pair of tetrahedra. Proc. Royal Soc. London A, 423:419442, 1989.

  • [13]

    T. Tarnai and E. Makai. Kinematical indeterminacy of a pair of tetrahedral frames. Acta Techn. Acad. Sci. Hungar., 102(1–2):123145, 1989.

    • Search Google Scholar
    • Export Citation
  • [14]

    Resultant (2023, Feb 2). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Resultant&oldid=1105451284

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)