Authors:
Robert X. J. Hao College of Science and Mathematics, Nanjing Institute of Technology, Nanjing 211167, P. R. China

Search for other papers by Robert X. J. Hao in
Current site
Google Scholar
PubMed
Close
and
Erin Y. Y. Shen School of Mathematics, Hohai University, Nanjing 210098, P. R. China

Search for other papers by Erin Y. Y. Shen in
Current site
Google Scholar
PubMed
Close
Restricted access

Lovejoy introduced the partition function Al¯n as the number of 𝑙-regular overpartitions of 𝑛. Andrews defined (𝑘, 𝑖)-singular overpartitions counted by the partition function C¯k,in, and pointed out that C¯3,1n=A3¯n. Meanwhile, Andrews derived an interesting divisibility property that C¯3,19n+3C¯3,19n+60 (mod 3). Recently, we constructed the partition statistic 𝑟𝑙-crank of 𝑙-regular overpartitions and give combinatorial interpretations for some congruences of Al¯n as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the 𝑟3-crank of 3-regular overpartitions.

  • [1]

    G. E. Andrews. Singular Overpartitions. Int. J. Number Theory 11:15231533, 2015.

  • [2]

    G. E. Andrews and F. G. Garvan. Dyson’s crank of a partition. Bull. Amer. Math. Soc. 18:167171, 1988.

  • [3]

    R. Barman and C. Ray. Congruences for 𝑙-regular overpartitions and Andrews’ singular overpartitions. Ramanujan J. 45:497515, 2018.

    • Search Google Scholar
    • Export Citation
  • [4]

    B. C. Berndt. Ramanujan’s Notebooks. Part III, Springer-Verlag, New York, 1991.

  • [5]

    W. Y. Chen, J. Q. Du, and J. C. Zhao. Finding modular functions for Ramanujan-type identities. Ann. Comb. 23:613657, 2019.

  • [6]

    S.-C. Chen, M. D. Hirschhorn, and J. A. Sellers. Arithmetic properties of Andrews’ singular overpartitions. Int. J. Number Theory 11:14631476, 2015.

    • Search Google Scholar
    • Export Citation
  • [7]

    F. G. Garvan. New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7, 11. Trans. Am. Math. Soc. 305:4777, 1988.

    • Search Google Scholar
    • Export Citation
  • [8]

    R. X. J. Hao and E. Y. Y. Shen. On the number of 𝑙-regular overpartitions. Int. J. Number Theory 17:21532173, 2021.

  • [9]

    M. D. Hirschhorn and J. A. Sellers. A congruence modulo 3 for partitions into distinct non-multiples of four. J. Integer Sequences 17:article no. 14.9.6, 2014.

    • Search Google Scholar
    • Export Citation
  • [10]

    J. Lovejoy. Gordon’s theorem for overpartitions. J. Combin. Theory A 103:393401, 2003.

  • [11]

    M. S. M. Naika and D. S. Gireesh. Congruences for Andrews’ singular overpartitions. J. Number Theory 165:109130, 2016.

  • [12]

    S. Ramanujan. Some properties of 𝑝(𝑛), the number of partitons of 𝑛. Proc. Cambridge Philos. Soc. 19:214216, 1919.

  • [13]

    C. Ray and R. Barman. Infinite families of congruences for J. Number Theory 14:1929, 2018.

  • [14]

    E. Y. Y. Shen. Arithmetic properties of 𝑙-regular overpartitions. Int. J. Number Theory 𝑘-regular overpartitions. Int. 12:841852, 2016.

    • Search Google Scholar
    • Export Citation
  • [15]

    O. X. M. Yao and E. X. W. Xia. New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions. J. Number Theory 133:19321949, 2013.

    • Search Google Scholar
    • Export Citation
  • [16]

    S. Seo and A. J. Yee. Overpartitions and singular overpartitions. In: Andrews, G., Garvan, F. (eds) Analytic Number Theory, Modular Forms and 𝑞-Hypergeometric Series. Springer Proceedings in Mathematics & Statistics, vol 221. Springer, Cham, 2016, 693711.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)