Authors:
Jesús A. De Loera Mathematics Department, University of California Davis, Davis, CA 95616, USA

Search for other papers by Jesús A. De Loera in
Current site
Google Scholar
PubMed
Close
,
Christopher O’Neill Mathematics Department, San Diego State University, San Diego, CA 92182, USA

Search for other papers by Christopher O’Neill in
Current site
Google Scholar
PubMed
Close
, and
Chengyang Wang Mathematics Department, University of California Davis, Davis, CA 95616, USA

Search for other papers by Chengyang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

In this paper, we explore affine semigroup versions of the convex geometry theorems of Helly, Tverberg, and Carathéodory. Additionally, we develop a new theory of colored affine semigroups, where the semigroup generators each receive a color and the elements of the semigroup take into account the colors used (the classical theory of affine semigroups coincides with the case in which all generators have the same color). We prove an analog of Tverberg’s theorem and colorful Helly’s theorem for semigroups, as well as a version of colorful Carathéodory’s theorem for cones. We also demonstrate that colored numerical semigroups are particularly rich by introducing a colored version of the Frobenius number.

  • [1]

    Karen Aardal, Cor A. J. Hurkens and Arjen K. Lenstra. Solving a system of linear Diophantine equations with lower and upper bounds on the variables. Math. Oper. Res., 25(3):427442, 2000.

    • Search Google Scholar
    • Export Citation
  • [2]

    Iskander Aliev, Jesús A. De Loera, Timm Oertel, and Christopher O’Neill. Sparse solutions of linear Diophantine equations. SIAM J. Appl. Algebra Geom., 1(1):239253, 2017.

    • Search Google Scholar
    • Export Citation
  • [3]

    Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2-3):141152, 1982.

  • [4]

    Imre Bárány. Combinatorial convexity, volume 77 of University Lecture Series. American Mathematical Society, Providence, RI, [2021] ©2021.

    • Search Google Scholar
    • Export Citation
  • [5]

    Imre Bárány and Gil Kalai. Helly-type problems. Bulletin of the American Mathematical Society, 59(4):471502, 2022.

  • [6]

    Imre Bárány and Shmuel Onn. Colourful linear programming and its relatives. Math. Oper. Res., 22(3):550567, 1997.

  • [7]

    Alexander Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

    • Search Google Scholar
    • Export Citation
  • [8]

    Alexander Barvinok. Integer points in polyhedra. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.

    • Search Google Scholar
    • Export Citation
  • [9]

    Matthias Beck and Sinai Robins. A formula related to the Frobenius problem in two dimensions. In Number theory (New York, 2003), pages 1723. Springer, New York, 2004.

    • Search Google Scholar
    • Export Citation
  • [10]

    D. Bertsimas and R. Weismantel. Optimization Over Integers. Dynamic Ideas, 2005.

  • [11]

    Winfried Bruns and Joseph Gubeladze. Polytopes, rings, and 𝐾-theory. Springer Monographs in Mathematics. Springer, Dordrecht, 2009.

  • [12]

    Winfried Bruns, Joseph Gubeladze, and Ngô Viêt Trung. Problems and algorithms for affine semigroups. Semigroup Forum, 64(2):180212, 2002.

    • Search Google Scholar
    • Export Citation
  • [13]

    Winfried Bruns and Robert Koch. Normaliz, computing normalizations of affine semigroups.

  • [14]

    J. W. S. Cassels. An introduction to the geometry of numbers. Classics in Mathematics. Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition.

    • Search Google Scholar
    • Export Citation
  • [15]

    David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.

    • Search Google Scholar
    • Export Citation
  • [16]

    Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s theorem and its relatives. In Proc. Sympos. Pure Math., Vol. VII, pages 101180. Amer. Math. Soc., Providence, R.I., 1963.

    • Search Google Scholar
    • Export Citation
  • [17]

    Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier and Nabil H. Mustafa. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Amer. Math. Soc. (N.S.), 56(3):415511, 2019.

    • Search Google Scholar
    • Export Citation
  • [18]

    Antoine Deza, Frédéric Meunier, and Pauline Sarrabezolles. A combinatorial approach to colourful simplicial depth. SIAM J. Discret. Math., 28(1):306322, 2014.

    • Search Google Scholar
    • Export Citation
  • [19]

    Antoine Deza, Tamon Stephen, and Feng Xie. A note on lower bounds for colourful simplicial depth. Symmetry, 5(1):4753, 2013.

  • [20]

    Leonard Eugene Dickson. Finiteness of the Odd Perfect and Primitive Abundant Numbers with 𝑛 Distinct Prime Factors. Amer. J. Math., 35(4):413422, 1913.

    • Search Google Scholar
    • Export Citation
  • [21]

    Jean-Paul Doignon. Convexity in cristallographical lattices. J. Geom., 3:7185, 1973.

  • [22]

    Friedrich Eisenbrand. Integer Programming and Algorithmic Geometry of Numbers. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

  • [23]

    Raymond Hemmecke, Akimichi Takemura, and Ruriko Yoshida. Computing holes in semi-groups and its applications to transportation problems. Contributions Discret. Math., 4(1), 2009.

    • Search Google Scholar
    • Export Citation
  • [24]

    Umed H. Karimov and Dušan Repovš. On the topological Helly theorem. Topology Appl., 153(10):16141621, 2006.

  • [25]

    Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer-Verlag, Berlin, 2004.

  • [26]

    Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The rainbow at the end of the line - A PPAD formulation of the colorful carathéodory theorem with applications. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 13421351. SIAM, 2017.

    • Search Google Scholar
    • Export Citation
  • [27]

    Frédéric Meunier and Pauline Sarrabezolles. Colorful linear programming, Nash equilibrium, and pivots. Discrete Appl. Math., 240:7891, 2018.

    • Search Google Scholar
    • Export Citation
  • [28]

    Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra, volume 227. Springer Science & Business Media, 2005.

  • [29]

    Richard Rado. Studien zur Kombinatorik. Math. Z., 36(1):424470, 1933.

  • [30]

    J. L. Ramírez-Alfonsín. Complexity of the Frobenius problem. Combinatorica, 16(1):143147, 1996.

  • [31]

    J. C. Rosales and P. A. García-Sánchez. Numerical semigroups, volume 20 of Developments in Mathematics. Springer, New York, 2009.

  • [32]

    András Sebö. Hilbert bases, Carathéodory’s theorem and combinatorial optimization. Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, (25):431455, 1990.

    • Search Google Scholar
    • Export Citation
  • [33]

    Richard P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996.

    • Search Google Scholar
    • Export Citation
  • [34]

    Bernd Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture Series. American Mathematical Society, Providence, RI, 1996.

    • Search Google Scholar
    • Export Citation
  • [35]

    H. Tverberg. A generalization of Radon’s theorem. J. London Math. Soc., 41:123128, 1966.

  • Collapse
  • Expand

The LaTeX template package can be downloaded from HERE.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2022  
Web of Science  
Total Cites
WoS
570
Journal Impact Factor 0.7
Rank by Impact Factor

Mathematics (Q3)

Impact Factor
without
Journal Self Cites
0.7
5 Year
Impact Factor
0.8
Journal Citation Indicator 0.65
Rank by Journal Citation Indicator

Mathematics (Q2)

Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0.351
Scimago Quartile Score

Mathematics (Q3)

Scopus  
Scopus
Cite Score
1.8
Scopus
CIte Score Rank
General Mathematics 128/387 (67th PCTL)
Scopus
SNIP
1.276

2021  
Web of Science  
Total Cites
WoS
589
Journal Impact Factor 0,739
Rank by Impact Factor Mathematics 229/332
Impact Factor
without
Journal Self Cites
0,710
5 Year
Impact Factor
0,654
Journal Citation Indicator 0,57
Rank by Journal Citation Indicator Mathematics 287/474
Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0,265
Scimago Quartile Score Mathematics (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
General Mathematics 193/391 (Q2)
Scopus
SNIP
0,746

2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 708 EUR / 860 USD
Print + online subscription: 796 EUR / 970 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)