In this paper, we explore affine semigroup versions of the convex geometry theorems of Helly, Tverberg, and Carathéodory. Additionally, we develop a new theory of colored affine semigroups, where the semigroup generators each receive a color and the elements of the semigroup take into account the colors used (the classical theory of affine semigroups coincides with the case in which all generators have the same color). We prove an analog of Tverberg’s theorem and colorful Helly’s theorem for semigroups, as well as a version of colorful Carathéodory’s theorem for cones. We also demonstrate that colored numerical semigroups are particularly rich by introducing a colored version of the Frobenius number.
Karen Aardal, Cor A. J. Hurkens and Arjen K. Lenstra. Solving a system of linear Diophantine equations with lower and upper bounds on the variables. Math. Oper. Res., 25(3):427–442, 2000.
Iskander Aliev, Jesús A. De Loera, Timm Oertel, and Christopher O’Neill. Sparse solutions of linear Diophantine equations. SIAM J. Appl. Algebra Geom., 1(1):239–253, 2017.
Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2-3):141–152, 1982.
Imre Bárány. Combinatorial convexity, volume 77 of University Lecture Series. American Mathematical Society, Providence, RI, [2021] ©2021.
Imre Bárány and Gil Kalai. Helly-type problems. Bulletin of the American Mathematical Society, 59(4):471–502, 2022.
Imre Bárány and Shmuel Onn. Colourful linear programming and its relatives. Math. Oper. Res., 22(3):550–567, 1997.
Alexander Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
Alexander Barvinok. Integer points in polyhedra. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
Matthias Beck and Sinai Robins. A formula related to the Frobenius problem in two dimensions. In Number theory (New York, 2003), pages 17–23. Springer, New York, 2004.
D. Bertsimas and R. Weismantel. Optimization Over Integers. Dynamic Ideas, 2005.
Winfried Bruns and Joseph Gubeladze. Polytopes, rings, and 𝐾-theory. Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
Winfried Bruns, Joseph Gubeladze, and Ngô Viêt Trung. Problems and algorithms for affine semigroups. Semigroup Forum, 64(2):180–212, 2002.
Winfried Bruns and Robert Koch. Normaliz, computing normalizations of affine semigroups.
J. W. S. Cassels. An introduction to the geometry of numbers. Classics in Mathematics. Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition.
David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s theorem and its relatives. In Proc. Sympos. Pure Math., Vol. VII, pages 101–180. Amer. Math. Soc., Providence, R.I., 1963.
Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier and Nabil H. Mustafa. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Amer. Math. Soc. (N.S.), 56(3):415–511, 2019.
Antoine Deza, Frédéric Meunier, and Pauline Sarrabezolles. A combinatorial approach to colourful simplicial depth. SIAM J. Discret. Math., 28(1):306–322, 2014.
Antoine Deza, Tamon Stephen, and Feng Xie. A note on lower bounds for colourful simplicial depth. Symmetry, 5(1):47–53, 2013.
Leonard Eugene Dickson. Finiteness of the Odd Perfect and Primitive Abundant Numbers with 𝑛 Distinct Prime Factors. Amer. J. Math., 35(4):413–422, 1913.
Jean-Paul Doignon. Convexity in cristallographical lattices. J. Geom., 3:71–85, 1973.
Friedrich Eisenbrand. Integer Programming and Algorithmic Geometry of Numbers. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
Raymond Hemmecke, Akimichi Takemura, and Ruriko Yoshida. Computing holes in semi-groups and its applications to transportation problems. Contributions Discret. Math., 4(1), 2009.
Umed H. Karimov and Dušan Repovš. On the topological Helly theorem. Topology Appl., 153(10):1614–1621, 2006.
Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer-Verlag, Berlin, 2004.
Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The rainbow at the end of the line - A PPAD formulation of the colorful carathéodory theorem with applications. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1342–1351. SIAM, 2017.
Frédéric Meunier and Pauline Sarrabezolles. Colorful linear programming, Nash equilibrium, and pivots. Discrete Appl. Math., 240:78–91, 2018.
Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra, volume 227. Springer Science & Business Media, 2005.
Richard Rado. Studien zur Kombinatorik. Math. Z., 36(1):424–470, 1933.
J. L. Ramírez-Alfonsín. Complexity of the Frobenius problem. Combinatorica, 16(1):143–147, 1996.
J. C. Rosales and P. A. García-Sánchez. Numerical semigroups, volume 20 of Developments in Mathematics. Springer, New York, 2009.
András Sebö. Hilbert bases, Carathéodory’s theorem and combinatorial optimization. Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, (25):431–455, 1990.
Richard P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996.
Bernd Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture Series. American Mathematical Society, Providence, RI, 1996.
H. Tverberg. A generalization of Radon’s theorem. J. London Math. Soc., 41:123–128, 1966.