Author:
Sirajul Haque Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, West Bengal, India

Search for other papers by Sirajul Haque in
Current site
Google Scholar
PubMed
Close
Restricted access

This article studies a new class of monomial ideals associated with a simple graph 𝐺, called generalized edge ideal, denoted by 𝐼𝑔(𝐺). Assuming that all the vertices 𝑥 have an exponent greater than 1 in 𝐼𝑔(𝐺), we completely characterize the graph 𝐺 for which 𝐼𝑔(𝐺) is integrally closed, and show that this is equivalent to 𝐼𝑔(𝐺) being normal i.e., all integral powers of 𝐼𝑔(𝐺) are integrally clased. We also give a necessary and sufficient condition for IgG=IgG¯ when 𝐺 is the star-shaped graph. Finally, we give a necessary and sufficient condition when the generalized edge ideal of a complete graph is integrally closed.

  • [1]

    A. Banerjee, B. Chakraborty, K. K. Das, M. Mandal, and S. Selvaraja. Equality of ordinary and symbolic powers of edge ideals of weighted oriented graphs. Communications in Algebra, 51(4):15751580, 2023.

    • Search Google Scholar
    • Export Citation
  • [2]

    A. Banerjee, K. K. Das, and S. Haque. Integral closure of powers of edge ideals of weighted oriented graphs. Preprint.

  • [3]

    A. Banerjee, K. K. Das, and S. Selvaraja. Powers of edge ideals of weighted oriented graphs with linear resolutions. Journal of Algebra and its Applications, 22(7):paper no. 2350148, 12, 2023.

    • Search Google Scholar
    • Export Citation
  • [4]

    B. Bollobás. Modern graph theory. Graduate Texts in Mathematics, 1998.

  • [5]

    B. Casiday and S. Kara. Betti numbers of weighted oriented graphs. Electronic Journal of Combinatorics, 28(2), 2021.

  • [6]

    A. Corso, C. Huneke, and W. V. Vasconcelos. On the integral closure of ideals. Manuscripta Mathematica, 95:331347, 1998.

  • [7]

    M. DiPasquale, C. A. Francisco, J. Mermin, and J. Schweig. Asymptotic resurgence via integral closures. Transactions of the American Mathematical Society, 372(9):66556676, 2019.

    • Search Google Scholar
    • Export Citation
  • [8]

    R. Fröberg. On stanley-reisner rings. Topics in algebra, Part 2 (Warsaw, 1988), 26:Banach Center Publ., 5770, 1990.

  • [9]

    P. Gimenez, J. Martínez-Bernal, A. Simis, R. H. Villarreal, and C. E. Vivares. Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs. In Singularities, algebraic geometry, commutative algebra, and related topics, pages 491510. Springer, Cham, 2018.

    • Search Google Scholar
    • Export Citation
  • [10]

    D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

    • Search Google Scholar
    • Export Citation
  • [11]

    G. Grisalde, A. Seceleanu, and R. H. Villarreal. Rees algebras of filtrations of covering polyhedra and integral closure of powers of monomial ideals. pages 131, 2021.

    • Search Google Scholar
    • Export Citation
  • [12]

    H. T. , K. N. Lin, S. Morey, E. Reyes, and R. H. Villarreal. Edge ideals of oriented graphs. Internat. J. Algebra Comput., 29(3):535559, 2019.

    • Search Google Scholar
    • Export Citation
  • [13]

    H. T. and N. V. Trung. Membership Criteria and Containments of Powers of Monomial Ideals. Acta Mathematica Vietnamica, 44(1):117139, 2019.

    • Search Google Scholar
    • Export Citation
  • [14]

    J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh. Binomial edge ideals and conditional independence statements. Advances in Applied Mathematics, 45(3):317333, 2010.

    • Search Google Scholar
    • Export Citation
  • [15]

    L. T. Hoa and T. N. Trung. Stability of depth and cohen-macaulayness of integral closures of powers of monomial ideals. Acta Mathematica Vietnamica, 43(1):6781, 2018.

    • Search Google Scholar
    • Export Citation
  • [16]

    M. Hochster. Cohen-macaulay rings, combinatorics, and simplicial complexes. Proc. of the 2nd Ok- lahoma Conf., Lecture Notes in Pure Appl. Math., 26:Marcel Dekker, 171224, 1997.

    • Search Google Scholar
    • Export Citation
  • [17]

    S. Kara Beyarslan, J. Biermann, K. N. Lin, and A. O’Keefe. Algebraic invariants of weighted oriented graphs. Journal of Algebraic Combinatorics, 55(2):461491, 2022.

    • Search Google Scholar
    • Export Citation
  • [18]

    M. Mandal and D. K. Pradhan. Regularity in weighted oriented graphs. Indian Journal of Pure and Applied Mathematics, 52(4):10551071, 2021.

    • Search Google Scholar
    • Export Citation
  • [19]

    M. Mandal and D. K. Pradhan. Symbolic powers in weighted oriented graphs. International Journal of Algebra and Computation, 31(03):533549, 2021.

    • Search Google Scholar
    • Export Citation
  • [20]

    M. Mandal and D. K. Pradhan. Comparing symbolic powers of edge ideals of weighted oriented graphs. Journal of Algebraic Combinatorics, , 2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [21]

    J. Martínez-Bernal, Y. Pitones, and R. H. Villarreal. Minimum distance functions of graded ideals and Reed–Muller-type codes. Journal of Pure and Applied Algebra, 221(2):251275, 2017.

    • Search Google Scholar
    • Export Citation
  • [22]

    Y. Pitones, E. Reyes, and J. Toledo. Monomial ideals of weighted oriented graphs. Electron. J. Combin., 26(3):Paper No. 3.44, 18, 2019.

  • [23]

    Y. Pitones, E. Reyes, and R. H. Villarreal. Unmixed and cohen–macaulay weighted oriented könig graphs. Studia Scientiarum Mathematicarum Hungarica, 58(3):276292, 2021.

    • Search Google Scholar
    • Export Citation
  • [24]

    V. C. Quiñonez. Integral closure and other operations on monomial ideals. Journal of Commutative Algebra, 2(3):359386, 2010.

  • [25]

    L. Reid, L. G. Roberts, and M. A. Vitulli. Some results on normal homogeneous ideals. Communications in Algebra, 31(9):44854506, 2003.

    • Search Google Scholar
    • Export Citation
  • [26]

    S. A. Seyed Fakhari. Stanley depth of the integral closure of monomial ideals. Collectanea Mathematica, 64(3):351362, 2013.

  • [27]

    R. P. Stanley. Hilbert functions of graded algebras. Advances in Mathematics, 28(1):5783, 1978.

  • [28]

    R. P. Stanley. Combinatorics and commutative algebra, volume 41. Second edition, 2005.

  • [29]

    I. Swanson and C. Huneke. Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, 2006.

  • [30]

    N. Viet Trung. Integral closures of monomial ideals and fulkersonian hypergraphs. Vietnam Journal of Mathematics, 34(4):489494, 2006.

    • Search Google Scholar
    • Export Citation
  • [31]

    N. Viet Trung. Square-free monomial ideals and hypergraphs. Notes for the Workshop on Integral Closure, Multiplier Ideals and Cores, AIM. https://www.aimath.org/WWN/integralclosure/Trung.pdf, 2006.

    • Search Google Scholar
    • Export Citation
  • [32]

    M. A. Vitulli. Some normal monomial ideals. Acta Mathematica Vietnamica, 0000:205217, 2003.

  • [33]

    G. Zhu, H. Wang, L. Xu, and J. Zhang. Regularity of powers of edge ideals of vertex-weighted oriented unicyclic graph. Rocky Mountain Journal of Mathematics, 49(3):699728, 2019.

    • Search Google Scholar
    • Export Citation
  • [34]

    G. Zhu, H. Wang, L. Xu, and J. Zhang. Algebraic properties of edge ideals of some vertex-weighted oriented m-partite graphs. Bull. Braz. Math. Soc. (N.S.), 52(4):10051023, 2021.

    • Search Google Scholar
    • Export Citation
  • [35]

    G. Zhu, L. Xu, H. Wang, and Z. Tang. Projective dimension and regularity of edge ideal of some weighted oriented graphs. Rocky Mountain Journal of Mathematics, 49(4):13911406, 2019.

    • Search Google Scholar
    • Export Citation
  • [36]

    G. Zhu, L. Xu, H. Wang, and Z. Tang. Regularity and projective dimension of powers of edge ideal of the disjoint union of some weighted oriented gap-free bipartite graphs. J. Algebra Appl., 19(12):23 pp, 2020.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)