This article studies a new class of monomial ideals associated with a simple graph 𝐺, called generalized edge ideal, denoted by 𝐼𝑔(𝐺). Assuming that all the vertices 𝑥 have an exponent greater than 1 in 𝐼𝑔(𝐺), we completely characterize the graph 𝐺 for which 𝐼𝑔(𝐺) is integrally closed, and show that this is equivalent to 𝐼𝑔(𝐺) being normal i.e., all integral powers of 𝐼𝑔(𝐺) are integrally clased. We also give a necessary and sufficient condition for
A. Banerjee, B. Chakraborty, K. K. Das, M. Mandal, and S. Selvaraja. Equality of ordinary and symbolic powers of edge ideals of weighted oriented graphs. Communications in Algebra, 51(4):1575–1580, 2023.
A. Banerjee, K. K. Das, and S. Haque. Integral closure of powers of edge ideals of weighted oriented graphs. Preprint.
A. Banerjee, K. K. Das, and S. Selvaraja. Powers of edge ideals of weighted oriented graphs with linear resolutions. Journal of Algebra and its Applications, 22(7):paper no. 2350148, 12, 2023.
B. Bollobás. Modern graph theory. Graduate Texts in Mathematics, 1998.
B. Casiday and S. Kara. Betti numbers of weighted oriented graphs. Electronic Journal of Combinatorics, 28(2), 2021.
A. Corso, C. Huneke, and W. V. Vasconcelos. On the integral closure of ideals. Manuscripta Mathematica, 95:331–347, 1998.
M. DiPasquale, C. A. Francisco, J. Mermin, and J. Schweig. Asymptotic resurgence via integral closures. Transactions of the American Mathematical Society, 372(9):6655–6676, 2019.
R. Fröberg. On stanley-reisner rings. Topics in algebra, Part 2 (Warsaw, 1988), 26:Banach Center Publ., 57–70, 1990.
P. Gimenez, J. Martínez-Bernal, A. Simis, R. H. Villarreal, and C. E. Vivares. Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs. In Singularities, algebraic geometry, commutative algebra, and related topics, pages 491–510. Springer, Cham, 2018.
D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
G. Grisalde, A. Seceleanu, and R. H. Villarreal. Rees algebras of filtrations of covering polyhedra and integral closure of powers of monomial ideals. pages 1–31, 2021.
H. T. Hà, K. N. Lin, S. Morey, E. Reyes, and R. H. Villarreal. Edge ideals of oriented graphs. Internat. J. Algebra Comput., 29(3):535–559, 2019.
H. T. Hà and N. V. Trung. Membership Criteria and Containments of Powers of Monomial Ideals. Acta Mathematica Vietnamica, 44(1):117–139, 2019.
J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh. Binomial edge ideals and conditional independence statements. Advances in Applied Mathematics, 45(3):317–333, 2010.
L. T. Hoa and T. N. Trung. Stability of depth and cohen-macaulayness of integral closures of powers of monomial ideals. Acta Mathematica Vietnamica, 43(1):67–81, 2018.
M. Hochster. Cohen-macaulay rings, combinatorics, and simplicial complexes. Proc. of the 2nd Ok- lahoma Conf., Lecture Notes in Pure Appl. Math., 26:Marcel Dekker, 171–224, 1997.
S. Kara Beyarslan, J. Biermann, K. N. Lin, and A. O’Keefe. Algebraic invariants of weighted oriented graphs. Journal of Algebraic Combinatorics, 55(2):461–491, 2022.
M. Mandal and D. K. Pradhan. Regularity in weighted oriented graphs. Indian Journal of Pure and Applied Mathematics, 52(4):1055–1071, 2021.
M. Mandal and D. K. Pradhan. Symbolic powers in weighted oriented graphs. International Journal of Algebra and Computation, 31(03):533–549, 2021.
M. Mandal and D. K. Pradhan. Comparing symbolic powers of edge ideals of weighted oriented graphs. Journal of Algebraic Combinatorics, , 2022.
J. Martínez-Bernal, Y. Pitones, and R. H. Villarreal. Minimum distance functions of graded ideals and Reed–Muller-type codes. Journal of Pure and Applied Algebra, 221(2):251–275, 2017.
Y. Pitones, E. Reyes, and J. Toledo. Monomial ideals of weighted oriented graphs. Electron. J. Combin., 26(3):Paper No. 3.44, 18, 2019.
Y. Pitones, E. Reyes, and R. H. Villarreal. Unmixed and cohen–macaulay weighted oriented könig graphs. Studia Scientiarum Mathematicarum Hungarica, 58(3):276–292, 2021.
V. C. Quiñonez. Integral closure and other operations on monomial ideals. Journal of Commutative Algebra, 2(3):359–386, 2010.
L. Reid, L. G. Roberts, and M. A. Vitulli. Some results on normal homogeneous ideals. Communications in Algebra, 31(9):4485–4506, 2003.
S. A. Seyed Fakhari. Stanley depth of the integral closure of monomial ideals. Collectanea Mathematica, 64(3):351–362, 2013.
R. P. Stanley. Hilbert functions of graded algebras. Advances in Mathematics, 28(1):57–83, 1978.
R. P. Stanley. Combinatorics and commutative algebra, volume 41. Second edition, 2005.
I. Swanson and C. Huneke. Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, 2006.
N. Viet Trung. Integral closures of monomial ideals and fulkersonian hypergraphs. Vietnam Journal of Mathematics, 34(4):489–494, 2006.
N. Viet Trung. Square-free monomial ideals and hypergraphs. Notes for the Workshop on Integral Closure, Multiplier Ideals and Cores, AIM. https://www.aimath.org/WWN/integralclosure/Trung.pdf, 2006.
M. A. Vitulli. Some normal monomial ideals. Acta Mathematica Vietnamica, 0000:205–217, 2003.
G. Zhu, H. Wang, L. Xu, and J. Zhang. Regularity of powers of edge ideals of vertex-weighted oriented unicyclic graph. Rocky Mountain Journal of Mathematics, 49(3):699–728, 2019.
G. Zhu, H. Wang, L. Xu, and J. Zhang. Algebraic properties of edge ideals of some vertex-weighted oriented m-partite graphs. Bull. Braz. Math. Soc. (N.S.), 52(4):1005–1023, 2021.
G. Zhu, L. Xu, H. Wang, and Z. Tang. Projective dimension and regularity of edge ideal of some weighted oriented graphs. Rocky Mountain Journal of Mathematics, 49(4):1391–1406, 2019.
G. Zhu, L. Xu, H. Wang, and Z. Tang. Regularity and projective dimension of powers of edge ideal of the disjoint union of some weighted oriented gap-free bipartite graphs. J. Algebra Appl., 19(12):23 pp, 2020.