Authors:
Oona Rainio University of Turku, FI-20014 Turku, Finland

Search for other papers by Oona Rainio in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7775-7656
and
Matti Vuorinen University of Turku, FI-20014 Turku, Finland

Search for other papers by Matti Vuorinen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1734-8228
Restricted access

The Hilbert metric between two points 𝑥, 𝑦 in a bounded convex domain 𝐺 is defined as the logarithm of the cross-ratio 𝑥, 𝑦 and the intersection points of the Euclidean line passing through the points 𝑥, 𝑦 and the boundary of the domain. Here, we study this metric in the case of the unit ball 𝔹𝑛. We present an identity between the Hilbert metric and the hyperbolic metric, give several inequalities for the Hilbert metric, and results related to the inclusion properties of the balls defined in the Hilbert metric. Furthermore, we study the distortion of the Hilbert metric under conformal and quasiregular mappings.

  • [1]

    G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen. Conformal invariants, inequalities and quasiconformal maps. J. Wiley, 1997.

  • [2]

    A .F. Beardon. The Klein, Hilbert, and Poincaré metrics of a domain, J. Comput. Appl. Math., 105:155162, 1999.

  • [3]

    A. F. Beardon. The Apollonian metric on domains in ℝ𝑛. In P. Duren, J. Heinonen, B. Os-good, B. Palka eds., Quasiconformal Mappings and Analysis: Articles Dedicated to Frederick W. Gehring on the Occasion of his 70th Birthday. Springer, Berlin, 1998, pp. 91108.

    • Search Google Scholar
    • Export Citation
  • [4]

    K. Böröczky, G. Kertész, and E. Makai. The minimum area of a simple polygon with given side lengths. Period Math Hung, 39:3349, 2000.

    • Search Google Scholar
    • Export Citation
  • [5]

    J. Chen, P. Hariri, R. Klén and M. Vuorinen. Lipschitz conditions, triangular ratio metric, and quasiconformal maps. Ann. Acad. Sci. Fenn. Math., 40:683709, 2015.

    • Search Google Scholar
    • Export Citation
  • [6]

    R. Frigerio and M. Moraschini. On volumes of truncated tetrahedra with constrained edge lengths. Period Math Hung, 79:3249, 2019.

  • [7]

    F. W. Gehring and B. P. Palka. Quasiconformally homogeneous domains, J. Analyse Math., 30:172199, 1976.

  • [8]

    P. Hariri, R. Klén and M. Vuorinen. Conformally Invariant Metrics and Quasiconformal Mappings. Springer, 2020.

  • [9]

    D. Hilbert. Ueber die gerade Linie als kurzeste Verbindung zweier Punkte. Math. Ann., 46:9196, 1895.

  • [10]

    Á. Horvath. Hyperbolic plane geometry revisited. J. Geom., 106(2):341362, 2015.

  • [11]

    Ž. Milin Šipuš. Translation surfaces of constant curvatures in a simply isotropic space. Period Math Hung 68:160175, (2014).

  • [12]

    O. Rainio. Intrinsic metrics in ring domains. Complex Anal Synerg, 8:article no. 3, (2022).

  • [13]

    O. Rainio. Intrinsic metrics under conformal and quasiregular mappings. Publ. Math. Debrecen, 101(1-2):189215, 2022.

  • [14]

    O. Rainio and M. Vuorinen. Triangular ratio metric in the unit disk. Complex Var. Elliptic Equ., 67(6):12991325, 2022.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)