The Hilbert metric between two points 𝑥, 𝑦 in a bounded convex domain 𝐺 is defined as the logarithm of the cross-ratio 𝑥, 𝑦 and the intersection points of the Euclidean line passing through the points 𝑥, 𝑦 and the boundary of the domain. Here, we study this metric in the case of the unit ball 𝔹𝑛. We present an identity between the Hilbert metric and the hyperbolic metric, give several inequalities for the Hilbert metric, and results related to the inclusion properties of the balls defined in the Hilbert metric. Furthermore, we study the distortion of the Hilbert metric under conformal and quasiregular mappings.
G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen. Conformal invariants, inequalities and quasiconformal maps. J. Wiley, 1997.
A .F. Beardon. The Klein, Hilbert, and Poincaré metrics of a domain, J. Comput. Appl. Math., 105:155–162, 1999.
A. F. Beardon. The Apollonian metric on domains in ℝ𝑛. In P. Duren, J. Heinonen, B. Os-good, B. Palka eds., Quasiconformal Mappings and Analysis: Articles Dedicated to Frederick W. Gehring on the Occasion of his 70th Birthday. Springer, Berlin, 1998, pp. 91–108.
K. Böröczky, G. Kertész, and E. Makai. The minimum area of a simple polygon with given side lengths. Period Math Hung, 39:33–49, 2000.
J. Chen, P. Hariri, R. Klén and M. Vuorinen. Lipschitz conditions, triangular ratio metric, and quasiconformal maps. Ann. Acad. Sci. Fenn. Math., 40:683–709, 2015.
R. Frigerio and M. Moraschini. On volumes of truncated tetrahedra with constrained edge lengths. Period Math Hung, 79:32–49, 2019.
F. W. Gehring and B. P. Palka. Quasiconformally homogeneous domains, J. Analyse Math., 30:172–199, 1976.
P. Hariri, R. Klén and M. Vuorinen. Conformally Invariant Metrics and Quasiconformal Mappings. Springer, 2020.
D. Hilbert. Ueber die gerade Linie als kurzeste Verbindung zweier Punkte. Math. Ann., 46:91–96, 1895.
Á. Horvath. Hyperbolic plane geometry revisited. J. Geom., 106(2):341–362, 2015.
Ž. Milin Šipuš. Translation surfaces of constant curvatures in a simply isotropic space. Period Math Hung 68:160–175, (2014).
O. Rainio. Intrinsic metrics in ring domains. Complex Anal Synerg, 8:article no. 3, (2022).
O. Rainio. Intrinsic metrics under conformal and quasiregular mappings. Publ. Math. Debrecen, 101(1-2):189–215, 2022.
O. Rainio and M. Vuorinen. Triangular ratio metric in the unit disk. Complex Var. Elliptic Equ., 67(6):1299–1325, 2022.