Authors:
Evgeniĭ Vitalievich Nikitenko Rubtsovsk Industrial Institute of Altai State Technical University after I. I. Polzunov, Rubtsovsk, Traktornaya st., 2/6, 658207, Russia

Search for other papers by Evgeniĭ Vitalievich Nikitenko in
Current site
Google Scholar
PubMed
Close
and
Yuriĭ Gennadievich Nikonorov Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Vatutina st., 53, 362025, Russia

Search for other papers by Yuriĭ Gennadievich Nikonorov in
Current site
Google Scholar
PubMed
Close
Restricted access

The paper is devoted to some extremal problems for convex polygons on the Euclidean plane, related to the concept of self Chebyshev radius for the polygon boundary. We consider a general problem of minimization of the perimeter among all 𝑛-gons with a fixed self Chebyshev radius of the boundary. The main result of the paper is the complete solution of the mentioned problem for 𝑛 = 4: We proved that the quadrilateral of minimum perimeter is a so called magic kite, that verified the corresponding conjecture by Rolf Walter.

  • [1]

    A. R. Alimov and I. G. Tsar’kov. Chebyshev centres, Jung constants, and their applications. Russ. Math. Surv., 74(5):775849, 2019.

  • [2]

    C. Alsina and R. B. Nelsen. A cornucopia of quadrilaterals. The Dolciani Mathematical Expositions, 55. MAA Press, Providence, RI; American Mathematical Society, Providence, RI, 2020.

    • Search Google Scholar
    • Export Citation
  • [3]

    D. Amir. Characterizations of Inner Product Spaces. Operator Theory: Advances and Applications Series Profile, Vol. 20. Basel–Boston–Stuttgart: Birkhäuser–Verlag. Basel, 1986.

    • Search Google Scholar
    • Export Citation
  • [4]

    D. Amir and Z. Ziegler. Relative Chebyshev centers in normed linear spaces, I. J. Approximation Theory, 29:235252, 1980.

  • [5]

    C. Audet, P. Hansen and F. Messine. The small octagon with longest perimeter. J. Combin. Th. A, 114:135150, 2007.

  • [6]

    C. Audet, P. Hansen and F. Messine. Isoperimetric polygons of maximum width. Discrete Comput. Geom., 4(1):4560, 2009.

  • [7]

    C. Audet, P. Hansen, F. Messine, and J. Xiong. The largest small octagon. J. Combin. Th. A, 98:4659, 2002.

  • [8]

    V. Balestro, H. Martini, Yu. G. Nikonorov, and Yu. V. Nikonorova. Extremal problems for convex curves with a given self Chebyshev radius. Results in Mathematics, 76(2), 2021, Paper No. 87, 13 pp.

    • Search Google Scholar
    • Export Citation
  • [9]

    H. H. Bauschke and P. K. Combettes. Convex analysis and monotone operator theory in Hilbert spaces, second edition. Cham: Springer, XIX+619 p., 2017.

    • Search Google Scholar
    • Export Citation
  • [10]

    T. Bonnesen and W. Fenchel. Theory of Convex Bodies, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith.

    • Search Google Scholar
    • Export Citation
  • [11]

    K. J. Falconer. A characterisation of plane curves of constant width. J. Lond. Math. Soc., II. Ser., 16:536538, 1977.

  • [12]

    R. Fedorov, A. Belov, A. Kovaldzhi, I. Yashchenko, and S. Levy (editors). Moscow Mathematical Olympiads, 1993–1999. Translation of the 2006 Russian original. MSRI Mathematical Circles Library, 4. Providence, RI: American Mathematical Society (AMS); Berkeley, CA: Mathematical Sciences Research Institute (MSRI), 2011.

    • Search Google Scholar
    • Export Citation
  • [13]

    R. Graham. The largest small hexagon. J. Combin. Th. A, 18:165170, 1975.

  • [14]

    K. H. Hang and H. Wang. Solving problems in geometry. Insights and strategies. Mathematical Olympiad Series 10. Hackensack, NJ: World Scientific, 2017.

    • Search Google Scholar
    • Export Citation
  • [15]

    K. G. Hare and M. J. Mossinghoff. Most Reinhardt polygons are sporadic. Geom. Dedicata, 198:118, 2019.

  • [16]

    R. H. Landau. A first course in scientific computing. Symbolic, graphic, and numeric modeling using Maple, Java, Mathematica, and Fortran90. With contributions by R. Wangberg, K. Augustson, M. J. Paez, C. C. Bordeianu and C. Barnes. Princeton University Press, Princeton, NJ, 2005.

    • Search Google Scholar
    • Export Citation
  • [17]

    H. Martini, L. Montejano, and D. Oliveros. Bodies of Constant Width. An Introduction to Convex Geometry with Applications. Birkhäuser/Springer, Cham, 2019.

    • Search Google Scholar
    • Export Citation
  • [18]

    V. V. Prasolov. Problems in Plane Geometry, 5th ed., rev. and compl. (Russian). Moscow, Russia: The Moscow Center for Continuous Mathematical Education, 2006. Online access: https://mccme.ru/free-books/prasolov/planim5.pdf

    • Search Google Scholar
    • Export Citation
  • [19]

    K. Reinhardt. Extremale Polygone gegebenen Durchmessers. Jahresbericht der Deutschen Mathematiker-Vereinigung, 31:251270, 1922.

  • [20]

    R. Walter. On a minimax problem for ovals. Minimax Theory Appl. 2(2):285318, 2017. See also arXiv:1606.06717.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)