Authors:
Tom Ashitha Department of Mathematics, Deva Matha College, Kuravilangad-686 633, Kerala, India

Search for other papers by Tom Ashitha in
Current site
Google Scholar
PubMed
Close
,
Thangaraj Asir Department of Mathematics, Pondicherry University, Puducherry-605 014, India

Search for other papers by Thangaraj Asir in
Current site
Google Scholar
PubMed
Close
,
Do Trong Hoang School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

Search for other papers by Do Trong Hoang in
Current site
Google Scholar
PubMed
Close
, and
Mohammad Reza Pournaki Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415, Tehran, Iran

Search for other papers by Mohammad Reza Pournaki in
Current site
Google Scholar
PubMed
Close
Restricted access

Let 𝑛 ≥ 2 be an integer. The graph Gn¯ is obtained by letting all the elements of {0, … , 𝑛 − 1} to be the vertices and defining distinct vertices 𝑥 and 𝑦 to be adjacent if and only if gcd(𝑥 + 𝑦, 𝑛) ≠ 1. In this paper, we give some bounds for the Castelnuovo–Mumford regularity of the edge ideals and their powers for Gn¯.

  • [1]

    T. Ashitha, T. Asir, D. T. Hoang, and M. R. Pournaki. Cohen–Macaulayness of a class of graphs versus the class of their complements. Discrete Math., 344(10): Paper No. 112525, 2021, 9 pp.

    • Search Google Scholar
    • Export Citation
  • [2]

    S. Beyarslan, H. T. , and T. N. Trung. Regularity of powers of forests and cycles. J. Algebraic Combin., 42(4):10771095, 2015.

  • [3]

    W. Bruns and J. Herzog. Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.

    • Search Google Scholar
    • Export Citation
  • [4]

    R. P. Grimaldi. Graphs from rings. In Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), Congr. Numer. 71, 95103, 1990.

    • Search Google Scholar
    • Export Citation
  • [5]

    J. Herzog and T. Hibi. Monomial Ideals. Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011.

  • [6]

    J. Herzog and T. Hibi. An upper bound for the regularity of powers of edge ideals. Math. Scand., 126(2):165169, 2020.

  • [7]

    D. T. Hoang, H. R. Maimani, A. Mousivand, and M. R. Pournaki. Cohen–Macaulayness of two classes of circulant graphs. J. Algebraic Combin., 53(3):805827, 2021.

    • Search Google Scholar
    • Export Citation
  • [8]

    M. Katzman. Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A, 113(3):435454, 2006.

  • [9]

    A. Simis, W. V. Vasconcelos, and R. H. Villarreal. On the ideal theory of graphs. J. Algebra, 167(2):389416, 1994.

  • [10]

    R. P. Stanley. Combinatorics and Commutative Algebra, Second Edition, 41. Birkhäuser Boston, Inc., Boston, MA, 1996.

  • [11]

    R. H. Villarreal. Cohen–Macaulay graphs. Manuscripta Math., 66(3):277293, 1990.

  • [12]

    R. H. Villarreal. Monomial Algebras, Second Edition. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.

  • [13]

    D. West. Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

  • [14]

    R. Woodroofe. Matchings, coverings, and Castelnuovo–Mumford regularity. J. Commut. Algebra, 6(2):287304, 2014.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)