Let 𝑛 ≥ 2 be an integer. The graph
T. Ashitha, T. Asir, D. T. Hoang, and M. R. Pournaki. Cohen–Macaulayness of a class of graphs versus the class of their complements. Discrete Math., 344(10): Paper No. 112525, 2021, 9 pp.
S. Beyarslan, H. T. Hà, and T. N. Trung. Regularity of powers of forests and cycles. J. Algebraic Combin., 42(4):1077–1095, 2015.
W. Bruns and J. Herzog. Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
R. P. Grimaldi. Graphs from rings. In Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), Congr. Numer. 71, 95–103, 1990.
J. Herzog and T. Hibi. Monomial Ideals. Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011.
J. Herzog and T. Hibi. An upper bound for the regularity of powers of edge ideals. Math. Scand., 126(2):165–169, 2020.
D. T. Hoang, H. R. Maimani, A. Mousivand, and M. R. Pournaki. Cohen–Macaulayness of two classes of circulant graphs. J. Algebraic Combin., 53(3):805–827, 2021.
M. Katzman. Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A, 113(3):435–454, 2006.
A. Simis, W. V. Vasconcelos, and R. H. Villarreal. On the ideal theory of graphs. J. Algebra, 167(2):389–416, 1994.
R. P. Stanley. Combinatorics and Commutative Algebra, Second Edition, 41. Birkhäuser Boston, Inc., Boston, MA, 1996.
R. H. Villarreal. Cohen–Macaulay graphs. Manuscripta Math., 66(3):277–293, 1990.
R. H. Villarreal. Monomial Algebras, Second Edition. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
D. West. Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
R. Woodroofe. Matchings, coverings, and Castelnuovo–Mumford regularity. J. Commut. Algebra, 6(2):287–304, 2014.