Authors:
Damir Ferizović Katholieke Universiteit Leuven, Celestijnenlaan 200B, Leuven, 3001, Belgium

Search for other papers by Damir Ferizović in
Current site
Google Scholar
PubMed
Close
,
Julian Hofstadler Universität Passau, Innstraße 33, Passau, 94032, Germany

Search for other papers by Julian Hofstadler in
Current site
Google Scholar
PubMed
Close
, and
Michelle Mastrianni University of Minnesota, 206 Church St. SE, Minneapolis, 55455, Minnesota, USA

Search for other papers by Michelle Mastrianni in
Current site
Google Scholar
PubMed
Close
Restricted access

In this paper we show that the spherical cap discrepancy of the point set given by centers of pixels in the HEALPix tessellation (short for Hierarchical, Equal Area and iso-Latitude Pixelation) of the unit 2-sphere is lower and upper bounded by order square root of the number of points, and compute explicit constants. This adds to the currently known (short) collection of explicitly constructed sets whose discrepancy converges with order 𝑁−1/2, matching the asymptotic order for i.i.d. random point sets. We describe the HEALPix framework in more detail and give explicit formulas for the boundaries and pixel centers. We then introduce the notion of an 𝑛-convex curve and prove an upper bound on how many fundamental domains are intersected by such curves, and in particular we show that boundaries of spherical caps have this property. Lastly, we mention briefly that a jittered sampling technique works in the HEALPix framework as well.

  • [1]

    C. Aistleitner, J. S. Brauchart, and J. Dick. Point Sets on the Sphere 𝕊2 with Small Spherical Cap Discrepancy. Discrete Comput. Geom., 48(4):9901024, 2012.

    • Search Google Scholar
    • Export Citation
  • [2]

    K. Alishahi and M. Zamani. The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab., 20:2327, 2015.

    • Search Google Scholar
    • Export Citation
  • [3]

    J. Beck. Sums of distances between points on a sphere—an application of the theory of irregularities of distribution to discrete geometry. Mathematica, 31(1):3341, 1984.

    • Search Google Scholar
    • Export Citation
  • [4]

    J. Beck. Some upper bounds in the theory of irregularities of distribution. Acta Arithmetica, 43(2):115130, 1984.

  • [5]

    J. Beck and W. L. Chen. Irregularities of Distribution. Cambridge University Press, Cambridge, 1987.

  • [6]

    Beltrán, C. and U. Etayo. The Diamond ensemble: A constructive set of spherical points with small logarithmic energy. J. Complex., 59:101471, 2020.

    • Search Google Scholar
    • Export Citation
  • [7]

    C. Beltrán, J. Marzo, and J. Ortega-Cerdà. Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex, 37:76109, 2016.

    • Search Google Scholar
    • Export Citation
  • [8]

    J. Brauchart, P. Grabner. Distributing many points on spheres: Minimal energy and designs. J. Complex., 31(3):293326, 2015.

  • [9]

    S. Borodachov, D. Hardin, and E. Saff. Discrete Energy on Rectifiable Sets. Springer (2019).

  • [10]

    A. Bondarenko, D. Radchenko, and M. Viasovska. Well separated spherical designs. Constr. Approx., 41(1):93112, 2014.

  • [11]

    W. L. Chen, A. Srivastav, and G. Travaglini. A Panorama of Discrepancy Theory. Lecture Notes in Mathematics 2107 (2014).

  • [12]

    U. Etayo. Spherical Cap Discrepancy of the Diamond Ensemble. Discrete Comput. Geom., 66:12181238, 2021.

  • [13]

    D. Ferizović. Spherical cap discrepancy of perturbed lattices under the Lambert projection. Discrete Comput Geom (to appear 2023). (arXiv:2202.13894)

    • Search Google Scholar
    • Export Citation
  • [14]

    Górski, K. M., E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophys. J., 622:759771, 2005.

    • Search Google Scholar
    • Export Citation
  • [15]

    D. P. Hardin, T. Michaels, and E. B. Saff. A Comparison of Popular Point Configurations on 𝕊2. Dolomites Research Notes on Approximation, 9:1649, 2016.

    • Search Google Scholar
    • Export Citation
  • [16]

    A. B. J. Kuijlaars and E. B. Saff. Distributing many points on a sphere. Math. Intell., 19:511, 1997.

  • [17]

    J. Matousek. Geometric Discrepancy: An Illustrated Guide. Algorithms and Comb., 18, 2010.

  • [18]

    A. Lubotzky, R. Phillips, and P. Sarnak. Hecke Operators and Distributing Points on the Sphere I. Commun. Pure Appl. Math., 39, 1968.

  • [19]

    E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou. Minimal discrete energy on the sphere. Math. Res. Lett., 1:647662, 1994.

  • [20]

    N. Sauer. On the density of families of sets. J. Comb. Theory, Series A, 13(1):145147, 1972.

  • [21]

    S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math., 41(1):247261, 1972.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)