Motivated by the examples of Heppes and Wegner, we present several other examples of the following kind: a bounded convex region 𝐷 and a convex disk 𝐾 in the plane are described, such that every thinnest covering of 𝐷 with congruent copies of 𝐾 contains crossing pairs.
A. Bezdek and W. Kuperberg. Unavoidable Crossings in a Thinnest Plane Covering with Congruent Convex Disks. Discrete Comput. Geom., 43:187–208, 2010.
L. Fejes Tóth. Some packing and covering theorems. Acta Sci Math. Szeged, 12/A:62–67, 1950.
L. Fejes Tóth. A covering problem. Amer. Math. Monthly, 81:632, 1974.
L. Fejes Tóth, G. Fejes Tóth, and W. Kuperberg. LAGERUNGEN Arrangements in the Plane, on the Sphere, and in Space, Springer. Grundlehren der mathematischen Wissenschaften (GL, volume 360), 2023.
R. Kershner. The number of circles covering a set. Amer. J. Math., 61:665–671, 1939.
G. Wegner. Zu einem ebenen Überdeckungsproblem, Studia Sci. Math. Hung., 15:287–297, 1980.