Authors:
David Conlon Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Search for other papers by David Conlon in
Current site
Google Scholar
PubMed
Close
,
Jacob Fox Department of Mathematics, Stanford University, Stanford, CA 94305, USA

Search for other papers by Jacob Fox in
Current site
Google Scholar
PubMed
Close
,
Xiaoyu He Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Search for other papers by Xiaoyu He in
Current site
Google Scholar
PubMed
Close
,
Dhruv Mubayi Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL 60607, USA

Search for other papers by Dhruv Mubayi in
Current site
Google Scholar
PubMed
Close
,
Andrew Suk Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA

Search for other papers by Andrew Suk in
Current site
Google Scholar
PubMed
Close
, and
Jacques Verstraรซte Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA

Search for other papers by Jacques Verstraรซte in
Current site
Google Scholar
PubMed
Close
Restricted access

For positive integers ๐‘›, ๐‘Ÿ, ๐‘  with ๐‘Ÿ > ๐‘ , the set-coloring Ramsey number ๐‘…(๐‘›; ๐‘Ÿ, ๐‘ ) is the minimum ๐‘ such that if every edge of the complete graph ๐พ๐‘ receives a set of ๐‘  colors from a palette of ๐‘Ÿ colors, then there is guaranteed to be a monochromatic clique on ๐‘› vertices, that is, a subset of ๐‘› vertices where all of the edges between them receive a common color. In particular, the case ๐‘  = 1 corresponds to the classical multicolor Ramsey number. We prove general upper and lower bounds on ๐‘…(๐‘›; ๐‘Ÿ, ๐‘ ) which imply that ๐‘…(๐‘›; ๐‘Ÿ, ๐‘ ) = 2ฮ˜(๐‘›๐‘Ÿ) if ๐‘ /๐‘Ÿ is bounded away from 0 and 1. The upper bound extends an old result of Erdล‘s and Szemerรฉdi, who treated the case ๐‘  = ๐‘Ÿ โˆ’ 1, while the lower bound exploits a connection to error-correcting codes. We also study the analogous problem for hypergraphs.

  • [1]

    N. Alon, P. Erdล‘s, D. S. Gunderson and M. Molloy. A Ramsey-type problem and the Turรกn numbers. J. Graph Theory, 40:120โ€“129, 2002.

    • Search Google Scholar
    • Export Citation
  • [2]

    M. Buciฤ‡ and A. Khamseh. The (๐‘ก โˆ’ 1)-chromatic Ramsey number for paths. J. Graph Theory, 102:784โ€“796, 2023.

  • [3]

    S. Bustamante and M. Stein. Monochromatic tree covers and Ramsey numbers for setcoloured graphs. Discrete Math., 341:266โ€“276, 2018.

    • Search Google Scholar
    • Export Citation
  • [4]

    M. Campos, S. Griffiths, R. Morris and J. Sahasrabudhe. An exponential improvement for diagonal Ramsey. Preprint available at arXiv:2303.09521 [math.CO].

    • Search Google Scholar
    • Export Citation
  • [5]

    D. Conlon. A new upper bound for diagonal Ramsey numbers. Ann. of Math., 170:941โ€“960, 2009.

  • [6]

    D. Conlon and A. Ferber. Lower bounds for multicolor Ramsey numbers. Adv. Math., 378:107528, 2021.

  • [7]

    P. Erdล‘s. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53:292โ€“294, 1947.

  • [8]

    P. Erdล‘s, A. Hajnal and R. Rado. Partition relations for cardinal numbers. Acta Math. Acad. Sci. Hungar., 16:93โ€“196, 1965.

  • [9]

    P. Erdล‘s and R. Rado. Combinatorial theorems on classifications of subsets of a given set. Proc. London Math. Soc., 3:417โ€“439, 1952.

    • Search Google Scholar
    • Export Citation
  • [10]

    P. Erdล‘s and G. Szekeres. A combinatorial problem in geometry. Compos. Math., 2:463โ€“470, 1935.

  • [11]

    P. Erdล‘s and A. Szemerรฉdi. On a Ramsey type theorem. Period. Math. Hungar., 2:295โ€“299, 1972.

  • [12]

    E. N. Gilbert. A comparison of signalling alphabets. Bell Syst. Tech. J., 31:504โ€“522, 1952.

  • [13]

    R. L. Graham, B. L. Rothschild and J. H. Spencer. Ramsey theory. Second edition, Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New York, 1990.

    • Search Google Scholar
    • Export Citation
  • [14]

    V. Guruswami, A. Rudra, and M. Sudan. Essential Coding Theory. Preprint available at https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/.

    • Search Google Scholar
    • Export Citation
  • [15]

    H. Lefmann. A note on Ramsey numbers. Studia Sci. Math. Hungar., 22:445โ€“446, 1987.

  • [16]

    O. Pikhurko, K. Staden and Z. B. Yilma. The Erdล‘sโ€“Rothschild problem on edge-colourings with forbidden monochromatic cliques. Math. Proc. Cambridge Philos. Soc., 163:341โ€“356, 2017.

    • Search Google Scholar
    • Export Citation
  • [17]

    A. Sah. Diagonal Ramsey via effective quasirandomness. Duke Math. J., 172:545โ€“567, 2023.

  • [18]

    W. Sawin. An improved lower bound for multicolor Ramsey numbers and a problem of Erdล‘s. J. Combin. Theory Ser. A, 188:105579, 2022.

  • [19]

    I. Schur. รœber die Kongruenz ๐‘ฅ๐‘š + ๐‘ฆ๐‘š โ‰ก ๐‘ง๐‘š (mod ๐‘). Jber. Deutsch. Math. Verein., 25:114โ€“117, 1916.

    • Search Google Scholar
    • Export Citation
  • [20]

    R. C. Singleton. Maximum distance ๐‘ž-nary codes. IEEE Trans. Inf. Theory, 10:116โ€“118, 1964.

  • [21]

    J. Spencer. Ramseyโ€™s theoremโ€“a new lower bound. J. Combin. Theory Ser. A, 18:108โ€“115, 1975.

  • [22]

    R. R. Varshamov. Estimate of the number of signals in error correcting codes (in Russian). Dokl. Acad. Nauk, 117:739โ€“741, 1957.

  • [23]

    Y. Wigderson. An improved lower bound on multicolor Ramsey numbers. Proc. Amer. Math. Soc., 149:2371โ€“2374, 2021.

  • [24]

    X. Xu, Z. Shao, W. Su and Z. Li. Set-coloring of edges and multigraph Ramsey numbers. Graphs Combin., 25:863โ€“870, 2009.

  • [25]

    W. Zhao, Z. Xie, X. Xu and Z. Chen. The application of probabilistic methods on estimating the asympotic behavior of multigraph Ramsey function (in Chinese). Proceedings of the 29th Chinese Control Conference, 2010, 1059โ€“1062.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)