We prove existence of Helly numbers for crystals and for cut-and-project sets with convex windows. Also we show that for a two-dimensional crystal consisting of 𝑘 copies of a single lattice the Helly number does not exceed 𝑘 + 6.
N. Amenta, J. A. De Loera, and P. Soberón. Helly’s Theorem: New Variations and Applications. In H. A. Harrington, M. Omar, and M. Wright, editors, Algebraic and Geometric Methods in Discrete Mathematics, Contemporary Mathematics, 685, 55–95. American Mathematical Society, 2017.
G. Averkov. On Maximal 𝑆-Free Sets and the Helly Number for the Family of S-Convex Sets. SIAM J. Discrete Math., 27(3):1610–1624, 2013.
G. Averkov and R. Weismnatel. Transversal numbers over subsets of linear spaces. Adv. Geom., 12:19–28, 2012.
M. Baake. A Guide to Mathematical Quasicrystals. In J.-B. Suck, M. Schreiber, and P. Häussler, editors, Quasicrystals – An Introduction of Structure, Physical Properties and Applications, 17–48. Springer, Berlin, 2002.
M. Baake and U. Grimm. Aperiodic Order. Vol. 1: A Mathematical Invitation. Cambridge University Press, Cambridge, 2013.
I. Bárány and J. Matoušek. A fractional Helly theorem for convex lattice sets. Adv. Math., 174:227–235, 2003.
F. P. M. Beenker. Algebraic theory of non-periodic tilings of the plane by two simple building blocks: a square and a rhombus. Eindhoven University of Technology, 1982, TH-Report, 82-WSK04.
N. G. de Bruijn. Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II. Nederl. Akad. Wetensch. Indag. Math., 43(1):39–66, 39–52, 53–66, 1981.
J. A. De Loera, R. N. La Haye, D. Oliveros, and E. Roldán-Pensado. Helly numbers of algebraic subsets of ℝ𝑑 and an extension of Doignon’s Theorem. Adv. Geom., 17(4):473–482, 2017.
J.-P. Doignon. Convexity in crystallographical lattices. J. Geom., 3:71–85, 1973.
D. Frettlöh, F. Gähler, and E. Harris. Tilings Encyclopedia. http://tilings.math.uni-bielefeld.de/.
E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.
R. V. Moody. Model sets: A survey. In F. Axel, F. Dénoyer, J. P. Gazeau, editors, From Quasicrystals to More Complex Systems. EDP Sciences, Les Ulis, and Springer, Berlin, 2000, 145–166.