Author:
Alexey Garber School of Mathematical & Statistical Sciences, The University of Texas Rio Grande Valley, 1 West University blvd., Brownsville, TX 78520, USA

Search for other papers by Alexey Garber in
Current site
Google Scholar
PubMed
Close
Restricted access

We prove existence of Helly numbers for crystals and for cut-and-project sets with convex windows. Also we show that for a two-dimensional crystal consisting of 𝑘 copies of a single lattice the Helly number does not exceed 𝑘 + 6.

  • [1]

    N. Amenta, J. A. De Loera, and P. Soberón. Helly’s Theorem: New Variations and Applications. In H. A. Harrington, M. Omar, and M. Wright, editors, Algebraic and Geometric Methods in Discrete Mathematics, Contemporary Mathematics, 685, 5595. American Mathematical Society, 2017.

    • Search Google Scholar
    • Export Citation
  • [2]

    G. Averkov. On Maximal 𝑆-Free Sets and the Helly Number for the Family of S-Convex Sets. SIAM J. Discrete Math., 27(3):16101624, 2013.

    • Search Google Scholar
    • Export Citation
  • [3]

    G. Averkov and R. Weismnatel. Transversal numbers over subsets of linear spaces. Adv. Geom., 12:1928, 2012.

  • [4]

    M. Baake. A Guide to Mathematical Quasicrystals. In J.-B. Suck, M. Schreiber, and P. Häussler, editors, Quasicrystals – An Introduction of Structure, Physical Properties and Applications, 1748. Springer, Berlin, 2002.

    • Search Google Scholar
    • Export Citation
  • [5]

    M. Baake and U. Grimm. Aperiodic Order. Vol. 1: A Mathematical Invitation. Cambridge University Press, Cambridge, 2013.

  • [6]

    I. Bárány and J. Matoušek. A fractional Helly theorem for convex lattice sets. Adv. Math., 174:227235, 2003.

  • [7]

    F. P. M. Beenker. Algebraic theory of non-periodic tilings of the plane by two simple building blocks: a square and a rhombus. Eindhoven University of Technology, 1982, TH-Report, 82-WSK04.

    • Search Google Scholar
    • Export Citation
  • [8]

    N. G. de Bruijn. Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II. Nederl. Akad. Wetensch. Indag. Math., 43(1):3966, 39–52, 53–66, 1981.

    • Search Google Scholar
    • Export Citation
  • [9]

    J. A. De Loera, R. N. La Haye, D. Oliveros, and E. Roldán-Pensado. Helly numbers of algebraic subsets of ℝ𝑑 and an extension of Doignon’s Theorem. Adv. Geom., 17(4):473482, 2017.

    • Search Google Scholar
    • Export Citation
  • [10]

    J.-P. Doignon. Convexity in crystallographical lattices. J. Geom., 3:7185, 1973.

  • [11]

    D. Frettlöh, F. Gähler, and E. Harris. Tilings Encyclopedia. http://tilings.math.uni-bielefeld.de/.

  • [12]

    A. Glazyrin. Private communication. May 2016.

  • [13]

    E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175176, 1923.

    • Search Google Scholar
    • Export Citation
  • [14]

    R. V. Moody. Model sets: A survey. In F. Axel, F. Dénoyer, J. P. Gazeau, editors, From Quasicrystals to More Complex Systems. EDP Sciences, Les Ulis, and Springer, Berlin, 2000, 145166.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)