We improve the lower bound on the translative covering density of tetrahedra found by Y. Li, M. Fu and Y. Zhang. Our method improves the bound from 1.00122 to 1.0075, but also shows the existence of similar lower density bounds for any polyhedron which has a face without opposite parallel face or edge.
J. H. Conway and S. Torquato. Packing, tiling, and covering with tetrahedra. Proc. Natl. Acad. Sci. USA, 103:10612-10617, 2006.
R. Dougherty and V. Faber. The degree-diameter problem for several varieties of Cayley graphs. I. The abelian case. SIAM J. Discrete Math., 17:478–519, 2004.
L. Fejes Tóth, G. Fejes Tóth, and W. Kuperberg. Lagerungen. Arrangements in the Plane, on the Sphere, and in Space. Springer, Grundlehren der mathematischen Wissenschaften (GL, volume 360), 2023.
M. Fu, F. Xue and C. Zong. M. Fu, F. Xue, and C. Zong. Lower bounds on lattice covering densities of simplices. SIAM J. Discrete Math., 37(3):1788–1804, 2023.
D. Hilbert. Mathematische Probleme. Arch. Math. Phys., 3:44–63, 1901. Bull. Amer. Math. Soc., 37:407–436, 2000.
D. J. Hoylman. The densest lattice packing of tetrahedra. Bull. Amer. Math. Soc., 76:135–137, 1970.
J. C. Lagarias and C. Zong. Mysteries in packing regular tetrahedra. Notices Amer. Math. Soc., 59(11):1540–1549, 2012.
Y. Li, M. Fu, and Y. Zhang. Lower bound on translative covering density of tetrahedra. Discrete Comput. Geom., 72:345–356, 2024.