Authors:
Arseniy Akopyan FORA Capital, Miami, FL, USA

Search for other papers by Arseniy Akopyan in
Current site
Google Scholar
PubMed
Close
and
Alexey Glazyrin School of Mathematical & Statistical Sciences, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

Search for other papers by Alexey Glazyrin in
Current site
Google Scholar
PubMed
Close
Restricted access

In this note we introduce a pseudometric on closed convex planar curves based on distances between normal lines and show its basic properties. Then we use this pseudometric to give a shorter proof of the theorem by Pinchasi that the sum of perimeters of 𝑘 convex planar bodies with disjoint interiors contained in a convex body of perimeter 𝑝 and diameter 𝑑 is not greater than 𝑝 + 2(𝑘 − 1)𝑑.

  • [1]

    A. Akopyan and R. Karasev. Kadets-Type Theorems for Partitions of a Convex Body. Discrete Comput. Geom., 48:766776, 2012.

  • [2]

    A. D. Aleksandrov. Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (in Russian). Uch. Zap., Leningrad. Gos. Univ. Math., 6:335, 1939.

    • Search Google Scholar
    • Export Citation
  • [3]

    R. D. Anderson and V. L. Klee, Jr. Convex functions and upper semi-continuous collections. Duke Math. J., 19:349357, 1952.

  • [4]

    A. Balitskiy. Shortest closed billiard trajectories in the plane and equality cases in Mahler’s conjecture. Geom. Dedicata, 184:121134, 2016.

    • Search Google Scholar
    • Export Citation
  • [5]

    H. G. Eggleston. Convexity. Cambridge Tracts in Mathematics and Mathematical Physics, 47. Cambridge University Press, New York, 1958.

  • [6]

    A. Glazyrin and F. Morić. Upper bounds for the perimeter of plane convex bodies. Acta Math. Hungar., 142:366383, 2014.

  • [7]

    P. C. Hammer and A. Sobczyk. Planar line families. I. In Proceedings of the American Mathematical Society 4, no. 3, 226233, 1953.

  • [8]

    P. C. Hammer and A. Sobczyk. Planar line families. II. In Proceedings of the American Mathematical Society 4, no. 3, 341349, 1953.

  • [9]

    H. Martini, L. Montejano and D. Oliveros. Bodies of constant width. Springer International Publishing, 2019.

  • [10]

    R. Pinchasi. On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane. Combinatorica, 37:99125, 2017.

    • Search Google Scholar
    • Export Citation
  • [11]

    Sh. Tanno. 𝐶-approximation of continuous ovals of constant width. J. Math. Soc. Japan, 28(2):384395, 1976.

  • [12]

    V. Toponogov. Differential Geometry of Curves and Surfaces. Birkhäuser-Verlag, 2006.

  • [13]

    B. Wegner. Analytic approximation of continuous ovals of constant width. J. Math. Soc. Japan, 29(3):537540, 1977.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)