Authors:
András Bezdek Department of Mathematics and Statistics, Auburn University, 221 Parker Hall, Auburn, AL 36849, USA

Search for other papers by András Bezdek in
Current site
Google Scholar
PubMed
Close
,
Ferenc Fodor Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary

Search for other papers by Ferenc Fodor in
Current site
Google Scholar
PubMed
Close
,
Viktor Vígh Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary

Search for other papers by Viktor Vígh in
Current site
Google Scholar
PubMed
Close
, and
Tamás Zarnócz Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary

Search for other papers by Tamás Zarnócz in
Current site
Google Scholar
PubMed
Close
Restricted access

Consider an arrangement of 𝑛 congruent zones on the 𝑑-dimensional unit sphere 𝑆𝑑−1, where a zone is the intersection of an origin symmetric Euclidean plank with 𝑆𝑑−1. We prove that, for sufficiently large 𝑛, it is possible to arrange 𝑛 congruent zones of suitable width on 𝑆𝑑−1 such that no point belongs to more than a constant number of zones, where the constant depends only on the dimension and the width of the zones. Furthermore, we also show that it is possible to cover 𝑆𝑑−1 by 𝑛 congruent zones such that each point of 𝑆𝑑−1 belongs to at most 𝐴𝑑 ln 𝑛 zones, where the 𝐴𝑑 is a constant that depends only on 𝑑. This extends the corresponding 3-dimensional result of Frankl, Nagy and Naszódi [8]. Moreover, we also examine coverings of 𝑆𝑑−1 with congruent zones under the condition that each point of the sphere belongs to the interior of at most 𝑑 − 1 zones.

  • [1]

    U. Betke, P. Gritzmann, and J. M. Wills. Slices of L. Fejes Tóth’s sausage conjecture. Math-ematika, 29(2):194201, 1983.

  • [2]

    K. J. Böröczky, F. Fodor, and D. Hug. Intrinsic volumes of random polytopes with vertices on the boundary of a convex body. Trans. Amer. Math. Soc., 365(2):785809, 2013.

    • Search Google Scholar
    • Export Citation
  • [3]

    K. Böröczky Jr. and G. Wintsche. Covering the sphere by equal spherical balls, Discrete and computational geometry. Algorithms Combin., vol. 25, Springer, Berlin, 2003, pp. 235251.

    • Search Google Scholar
    • Export Citation
  • [4]

    P. Erdős and C. A. Rogers. Covering space with convex bodies. Acta Arith., 7:281285, 1961/1962.

  • [5]

    G. Fejes Tóth and W. Kuperberg. Packing and covering with convex sets, Handbook of convex geometry, Vol. A, B. North-Holland, Amsterdam, 1993, pp. 799860.

    • Search Google Scholar
    • Export Citation
  • [6]

    L. Fejes Tóth. Research Problems: Exploring a Planet. Amer. Math. Monthly, 80(9):10431044, 1973.

  • [7]

    F. Fodor, V. Vígh, and T. Zarnócz. Covering the sphere by equal zones. Acta Math. Hungar., 149(2):478489, 2016.

  • [8]

    N. Frankl, J. Nagy, and M. Naszódi. Coverings: variations on a result of Rogers and on the epsilon-net theorem of Haussler and Welzl. Discrete Math., 341(3):863874, 2018.

    • Search Google Scholar
    • Export Citation
  • [9]

    Z. Füredi and J.-H. Kang. Covering the 𝑛-space by convex bodies and its chromatic number. Discrete Math., 308(19):44954500, 2008.

    • Search Google Scholar
    • Export Citation
  • [10]

    A. Glazyrin, R. Karasev, and A. Polyanskii. Covering by Planks and Avoiding Zeros of Polynomials. International Mathematics Research Notices, 13(2022):1168411700, 2023.

    • Search Google Scholar
    • Export Citation
  • [11]

    Z. Jiang and A. Polyanskii. Proof of László Fejes Tóth’s zone conjecture. Geom. Funct. Anal., 27(6):13671377, 2017.

  • [12]

    L. Kérchy and G. P. Nagy. A 2015. évi Schweitzer Miklós Matematikai Emlékverseny. https://www.bolyai.hu/files/Schweitzer2015beszamolo.pdf(last accessed: September 28, 2023) (2016).

    • Search Google Scholar
    • Export Citation
  • [13]

    J. Linhart. Eine extremale Verteilung von Grosskreisen. Elem. Math., 29:5759, 1974.

  • [14]

    V. Rosta. An extremal distribution of three great circles. Mat. Lapok, 23(1972):161162, 1973. (In Hungarian).

  • [15]

    A. Tarski. Remarks on the degree of equivalence of polygons. Parametr., 2:310314, 1932.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)