High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to the sphere and the hyperbolic plane. Let us have in 𝑆2, ℝ2 or 𝐻2 a pair of convex bodies (for 𝑆2 different from 𝑆2), such that the intersections of any congruent copies of them are centrally symmetric. Then our bodies are congruent circles. If the intersections of any congruent copies of them are axially symmetric, then our bodies are (incongruent) circles. Let us have in 𝑆2, ℝ2 or 𝐻2 proper closed convex subsets 𝐾, 𝐿 with interior points, such that the numbers of the connected components of the boundaries of 𝐾 and 𝐿 are finite. If the intersections of any congruent copies of 𝐾 and 𝐿 are centrally symmetric, then 𝐾 and 𝐿 are congruent circles, or, for ℝ2, parallel strips. For ℝ2 we exactly describe all pairs of such subsets 𝐾, 𝐿, whose any congruent copies have an intersection with axial symmetry (there are five cases).
D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov. Geometry of spaces of constant curvature. Geometry II (Ed. E. B. Vinberg), Encyclopaedia Math. Sci. 29, 1–138. Springer, Berlin, 1993
R. Baldus. Nichteuklidische Geometrie, Hyperbolische Geometrie der Ebene, 4-te Aufl., Bearbeitet und ergänzt von F. Löbell (Non-Euclidean geometry, hyperbolic geometry of the plane, 4th ed., revised and expanded by F. Löbell). In German. Sammlung Göschen (Göschen Collection), 970/970a, de Gruyter, Berlin, 1964.
T. Bonnesen, and W. Fenchel. Theorie der konvexen Körper, Berichtigter Reprint. (Theory of convex bodies, corrected reprint). In German. Springer, Berlin-New York, 1974.
R. Bonola. Non-Euclidean geometry, a critical and historical study of its developments. Translation with additional appendices by H. S. Carslaw. With a Supplement containing the G. B. Halstead translations of “The science of absolute space” by J. Bolyai and “The theory of parallels” by N. Lobachevski. Dover Publs. Inc., New York, N.Y., 1955.
H. S. M. Coxeter. Non-Euclidean Geometry, 6th ed. Spectrum Series, The Math. Ass. of America, Washington, DC, 1998.
E. Heil and H. Martini. Special convex bodies. In: Handbook of Convex Geometry (eds. P. M. Gruber, J. M. Wills). North-Holland, Amsterdam etc., 1993, Ch. 1.11, 347–385.
R. High. Characterization of a disc, Solution to problem 1360 (posed by P. R. Scott) Math. Magazine, 64:353–354, 1991.
J. Jerónimo-Castro and E. Makai, Jr. Ball characterizations in spaces of constant curvature. Studia Sci. Math. Hungar., 55:421–478, 2018.
J. Jerónimo-Castro and E. Makai, Jr. Ball characterizations in planes and spaces of constant. curvature, II. Manuscript in preparation.
J. Jerónimo-Castro and E. Makai, Jr. Ball characterizations in Euclidean spaces. Manuscript in preparation.
H. Liebmann. Nichteuklidische Geometrie, 3-te Auflage. (Non-Euclidean geometry, 3rd ed.) In German. de Gruyter, Berlin, 1923.
O. Perron. Nichteuklidische Elementargeometrie der Ebene. (Non-Euclidean elementary geometry of the plane) In German. Math. Leitfäden. Teubner, Stuttgart, 1962.
R. Schneider. Convex bodies: the Brunn–Minkowski theory. Convex bodies: the Brunn– Minkowski theory. Second expanded edition. Encyclopedia of Math. and its Appls., Vol. 44; 151. Cambridge Univ. Press, Cambridge, 1993; 2014.
V. Soltan. Line-free convex bodies with centrally symmetric intersections of translates. Revue Roumaine Math. Pures Appl., 51:111–123, 2006. (Also in: Papers on Convexity and Discrete geometry, Ded. to T. Zamfirescu on the occasion of his 60th birthday. Editura Academiei Române, Bucureşti, 2006, 411–423.)
J. J. Stoker. Differential Geometry. New York Univ., Inst. Math. Sci., New York, 1956.
I. Vermes. Über die synthetische Behandlung der Krümmung und des Schmiegzykels der ebenen Kurven in der Bolyai-Lobatschefskyschen Geometrie. (On the synthetic treatment of the curvature and the osculating cycle in the Bolyai-Lobachevski˘ıan geometry) In German. Studia Sci. Math. Hungar., 28:289–297, 1993.
Beltrami–Klein model. Wikipedia. https://en.wikipedia.org/wiki/Beltrami-Klein_model
Hyperbolic triangle. Wikipedia. https://en.wikipedia.org/wiki/Hyperbolic_triangle
Poincaré disk model. Wikipedia. https://en.wikipedia.org/wiki/Poincaré_disk_model