Authors:
Jesús Jerónimo-Castro Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas s/n C.P. 76010, Santiago de Querétaro, Qro. México, MEXICO

Search for other papers by Jesús Jerónimo-Castro in
Current site
Google Scholar
PubMed
Close
and
Endre Makai Jr. Alfréd Rényi Institute of Mathematics, Hungarian Research Network (HUN-REN), H-1364 Budapest, Pf. 127, Hungary

Search for other papers by Endre Makai Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to the sphere and the hyperbolic plane. Let us have in 𝑆2, ℝ2 or 𝐻2 a pair of convex bodies (for 𝑆2 different from 𝑆2), such that the intersections of any congruent copies of them are centrally symmetric. Then our bodies are congruent circles. If the intersections of any congruent copies of them are axially symmetric, then our bodies are (incongruent) circles. Let us have in 𝑆2, ℝ2 or 𝐻2 proper closed convex subsets 𝐾, 𝐿 with interior points, such that the numbers of the connected components of the boundaries of 𝐾 and 𝐿 are finite. If the intersections of any congruent copies of 𝐾 and 𝐿 are centrally symmetric, then 𝐾 and 𝐿 are congruent circles, or, for ℝ2, parallel strips. For ℝ2 we exactly describe all pairs of such subsets 𝐾, 𝐿, whose any congruent copies have an intersection with axial symmetry (there are five cases).

  • [1]

    D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov. Geometry of spaces of constant curvature. Geometry II (Ed. E. B. Vinberg), Encyclopaedia Math. Sci. 29, 1138. Springer, Berlin, 1993

    • Search Google Scholar
    • Export Citation
  • [2]

    R. Baldus. Nichteuklidische Geometrie, Hyperbolische Geometrie der Ebene, 4-te Aufl., Bearbeitet und ergänzt von F. Löbell (Non-Euclidean geometry, hyperbolic geometry of the plane, 4th ed., revised and expanded by F. Löbell). In German. Sammlung Göschen (Göschen Collection), 970/970a, de Gruyter, Berlin, 1964.

    • Search Google Scholar
    • Export Citation
  • [3]

    T. Bonnesen, and W. Fenchel. Theorie der konvexen Körper, Berichtigter Reprint. (Theory of convex bodies, corrected reprint). In German. Springer, Berlin-New York, 1974.

    • Search Google Scholar
    • Export Citation
  • [4]

    R. Bonola. Non-Euclidean geometry, a critical and historical study of its developments. Translation with additional appendices by H. S. Carslaw. With a Supplement containing the G. B. Halstead translations of “The science of absolute space” by J. Bolyai and “The theory of parallels” by N. Lobachevski. Dover Publs. Inc., New York, N.Y., 1955.

    • Search Google Scholar
    • Export Citation
  • [5]

    H. S. M. Coxeter. Non-Euclidean Geometry, 6th ed. Spectrum Series, The Math. Ass. of America, Washington, DC, 1998.

  • [6]

    E. Heil and H. Martini. Special convex bodies. In: Handbook of Convex Geometry (eds. P. M. Gruber, J. M. Wills). North-Holland, Amsterdam etc., 1993, Ch. 1.11, 347385.

    • Search Google Scholar
    • Export Citation
  • [7]

    R. High. Characterization of a disc, Solution to problem 1360 (posed by P. R. Scott) Math. Magazine, 64:353354, 1991.

  • [8]

    J. Jerónimo-Castro and E. Makai, Jr. Ball characterizations in spaces of constant curvature. Studia Sci. Math. Hungar., 55:421478, 2018.

    • Search Google Scholar
    • Export Citation
  • [9]

    J. Jerónimo-Castro and E. Makai, Jr. Ball characterizations in planes and spaces of constant. curvature, II. Manuscript in preparation.

    • Search Google Scholar
    • Export Citation
  • [10]

    J. Jerónimo-Castro and E. Makai, Jr. Ball characterizations in Euclidean spaces. Manuscript in preparation.

  • [11]

    H. Liebmann. Nichteuklidische Geometrie, 3-te Auflage. (Non-Euclidean geometry, 3rd ed.) In German. de Gruyter, Berlin, 1923.

  • [12]

    O. Perron. Nichteuklidische Elementargeometrie der Ebene. (Non-Euclidean elementary geometry of the plane) In German. Math. Leitfäden. Teubner, Stuttgart, 1962.

    • Search Google Scholar
    • Export Citation
  • [13]

    R. Schneider. Convex bodies: the Brunn–Minkowski theory. Convex bodies: the Brunn– Minkowski theory. Second expanded edition. Encyclopedia of Math. and its Appls., Vol. 44; 151. Cambridge Univ. Press, Cambridge, 1993; 2014.

    • Search Google Scholar
    • Export Citation
  • [14]

    V. Soltan. Line-free convex bodies with centrally symmetric intersections of translates. Revue Roumaine Math. Pures Appl., 51:111123, 2006. (Also in: Papers on Convexity and Discrete geometry, Ded. to T. Zamfirescu on the occasion of his 60th birthday. Editura Academiei Române, Bucureşti, 2006, 411–423.)

    • Search Google Scholar
    • Export Citation
  • [15]

    J. J. Stoker. Differential Geometry. New York Univ., Inst. Math. Sci., New York, 1956.

  • [16]

    I. Vermes. Über die synthetische Behandlung der Krümmung und des Schmiegzykels der ebenen Kurven in der Bolyai-Lobatschefskyschen Geometrie. (On the synthetic treatment of the curvature and the osculating cycle in the Bolyai-Lobachevski˘ıan geometry) In German. Studia Sci. Math. Hungar., 28:289297, 1993.

    • Search Google Scholar
    • Export Citation
  • [17]

    Beltrami–Klein model. Wikipedia. https://en.wikipedia.org/wiki/Beltrami-Klein_model

  • [18]

    Hyperbolic triangle. Wikipedia. https://en.wikipedia.org/wiki/Hyperbolic_triangle

  • [19]

    Poincaré disk model. Wikipedia. https://en.wikipedia.org/wiki/Poincaré_disk_model

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)