Authors:
Mitchell Jubeir Department of Mathematics, UC Santa Barbara, Santa Barbara, CA 93106, USA

Search for other papers by Mitchell Jubeir in
Current site
Google Scholar
PubMed
Close
,
Ina Petkova Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA

Search for other papers by Ina Petkova in
Current site
Google Scholar
PubMed
Close
,
Noah Schwartz Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA

Search for other papers by Noah Schwartz in
Current site
Google Scholar
PubMed
Close
,
Zachary Winkeler Department of Mathematical Sciences, Smith College, Northampton, MA 01063, USA

Search for other papers by Zachary Winkeler in
Current site
Google Scholar
PubMed
Close
, and
C.-M. Michael Wong Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Search for other papers by C.-M. Michael Wong in
Current site
Google Scholar
PubMed
Close
Restricted access

We prove that the filtered GRID invariants of Legendrian links in link Floer homology, and consequently their associated invariants in the spectral sequence, obstruct decomposable Lagrangian cobordisms in the symplectization of the standard contact structure on ℝ3, strengthening a result by Baldwin, Lidman, and the fifth author.

  • [1]

    J. A. Baldwin, T. Lidman, and C.-M. M. Wong. Lagrangian cobordisms and Legendrian invariants in knot Floer homology. Michigan Math. J., 71(1):145175, 2022.

    • Search Google Scholar
    • Export Citation
  • [2]

    J. A. Baldwin and S. Sivek. Invariants of Legendrian and transverse knots in monopole knot homology. J. Symplectic Geom., 16(4):9591000, 2018.

    • Search Google Scholar
    • Export Citation
  • [3]

    J. A. Baldwin and S. Sivek. On the equivalence of contact invariants in sutured Floer homology theories. Geom. Topol., 25(3):10871164, 2021.

    • Search Google Scholar
    • Export Citation
  • [4]

    F. Bourgeois and B. Chantraine. Bilinearized Legendrian contact homology and the augmentation category. J. Symplectic Geom., 12(3):553583, 2014.

    • Search Google Scholar
    • Export Citation
  • [5]

    F. Bourgeois, J. M. Sabloff, and L. Traynor. Lagrangian cobordisms via generating families: construction and geography. Algebr. Geom. Topol., 15(4):24392477, 2015.

    • Search Google Scholar
    • Export Citation
  • [6]

    B. Chantraine. Lagrangian concordance of Legendrian knots. Algebr. Geom. Topol., 10(1):6385, 2010.

  • [7]

    B. Chantraine. A note on exact lagrangian cobordisms with disconnected legendrian ends. arXiv : Symplectic Geometry, pages 13251331, 2013.

    • Search Google Scholar
    • Export Citation
  • [8]

    B. Chantraine. Lagrangian concordance is not a symmetric relation. Quantum Topol., 6(3):451474, 2015.

  • [9]

    B. Chantraine, G. Dimitroglou Rizell, P. Ghiggini, and R. Golovko. Floer homology and Lagrangian concordance. In Proceedings of the Gökova Geometry-Topology Conference 2014, pages 76113. Gökova Geometry/Topology Conference (GGT), Gökova, 2015.

    • Search Google Scholar
    • Export Citation
  • [10]

    Baptiste Chantraine. Some non-collarable slices of lagrangian surfaces. Bulletin of the London Mathematical Society, 44(5):981987, April 2012.

    • Search Google Scholar
    • Export Citation
  • [11]

    Y. Chekanov. Differential algebra of Legendrian links. Invent. Math., 150(3):441483, 2002.

  • [12]

    W. Chongchitmate and L. Ng. An atlas of Legendrian knots. Exp. Math., 22(1):2637, 2013.

  • [13]

    Ch. Cornwell, L. Ng, and S. Sivek. Obstructions to Lagrangian concordance. Algebr. Geom. Topol., 16(2):797824, 2016.

  • [14]

    P. R. Cromwell. Embedding knots and links in an open book. I. Basic properties. Topology Appl., 64(1):3758, 1995.

  • [15]

    G. Dimitroglou Rizell. Legendrian ambient surgery and Legendrian contact homology. J. Symplectic Geom., 14(3):811901, 2016.

  • [16]

    G. Dimitroglou Rizell and R. Golovko. Instability of Legendrian knottedness, and non-regular Lagrangian concordances of knots. 2024.

  • [17]

    T. Ekholm, Ko Honda, and T. Kálmán. Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS), 18(11):26272689, 2016.

    • Search Google Scholar
    • Export Citation
  • [18]

    Y. Eliashberg, A. Givental, and H. Hofer. Introduction to symplectic field theory. Geom. Funct. Anal., Special Volume, Part II, pages 560673, 2000.

    • Search Google Scholar
    • Export Citation
  • [19]

    M. Golla and A. Juhász. Functoriality of the EH class and the LOSS invariant under Lagrangian concordances. Algebr. Geom. Topol., 19(7):36833699, 2019.

    • Search Google Scholar
    • Export Citation
  • [20]

    Mitchell Jubeir, Ina Petkova, Noah Schwartz, Zachary Winkeler, and C.-M. Michael Wong. FilteredGRID. available at https://github.com/math-SHUR/FilteredGRID, 2024.

    • Search Google Scholar
    • Export Citation
  • [21]

    Ç. Kutluhan, G. Matić, J. Van Horn-Morris, and A. Wand. Filtering the Heegaard Floer contact invariant. Geom. Topol., 27(6):21812236, 2023.

    • Search Google Scholar
    • Export Citation
  • [22]

    C. Manolescu, P. Ozsváth, and S. Sarkar. A combinatorial description of knot Floer homo-logy. Ann. of Math. (2), 169(2):633660, 2009.

    • Search Google Scholar
    • Export Citation
  • [23]

    C. Manolescu, P. Ozsváth, Z. Szabó, and D. Thurston. On combinatorial link Floer homo-logy. Geom. Topol., 11:23392412, 2007.

  • [24]

    C. Manolescu, P. S. Ozsváth, and D. P. Thurston. Grid diagrams and Heegaard Floer invariants. 2024.

  • [25]

    L. Meyers, R. Quarles, B. Roberts, D. Sh. Vela-Vick, and C.-M. M. Wong. transverse-hfk-revision. available at https://github.com/albenzo/transverse-hfk-revision/, 2019. accessed on Jun 7, 2019.

    • Search Google Scholar
    • Export Citation
  • [26]

    L. Ng, P. Ozsváth, and D. Thurston. TransverseHFK.c. available at https://services.math.duke.edu/~ng/math/TransverseHFK.c, 2007. accessed on Feb 8, 2019.

    • Search Google Scholar
    • Export Citation
  • [27]

    L. Ng, P. Ozsváth, and D. Thurston. Transverse knots distinguished by knot Floer homology. J. Symplectic Geom., 6(4):461490, 2008.

  • [28]

    P. Ozsváth, Z. Szabó, and D. Thurston. Legendrian knots, transverse knots and combinatorial Floer homology. Geom. Topol., 12(2):941980, 2008.

    • Search Google Scholar
    • Export Citation
  • [29]

    P. S. Ozsváth, A. I. Stipsicz, and Z. Szabó. Grid homology for knots and links, volume 208 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.

    • Search Google Scholar
    • Export Citation
  • [30]

    Y. Pan. The augmentation category map induced by exact Lagrangian cobordisms. Algebr. Geom. Topol., 17(3):18131870, 2017.

  • [31]

    J. M. Sabloff and L. Traynor. Obstructions to Lagrangian cobordisms between Legendrians via generating families. Algebr. Geom. Topol., 13(5):27332797, 2013.

    • Search Google Scholar
    • Export Citation
  • [32]

    D. Sauvaget. Curiosités lagrangiennes en dimension 4. Annales de l’institut Fourier, 54(6):19972020, 2004.

  • [33]

    The Stacks project contributors. The Stacks project. available at https://stacks.math.columbia.edu, 2018. accessed on Jan 17, 2023.

  • [34]

    Ch. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

    • Search Google Scholar
    • Export Citation
  • [35]

    C.-M. M. Wong. Grid diagrams and Manolescu’s unoriented skein exact triangle for knot Floer homology. Algebr. Geom. Topol., 17(3):12831321, 2017.

    • Search Google Scholar
    • Export Citation
  • [36]

    I. Zemke. Link cobordisms and functoriality in link Floer homology. J. Topol., 12(1):94220, 2019.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)