Authors:
Károly J. Böröczky Alfréd Rényi Institute of Mathematics, Realtanoda u. 13-15, H-1053 Budapest, Hungary

Search for other papers by Károly J. Böröczky in
Current site
Google Scholar
PubMed
Close
and
Apratim De Department of Mathematics, Central European University, Nádor u. 9, H-1051, Budapest, Hungary

Search for other papers by Apratim De in
Current site
Google Scholar
PubMed
Close
Restricted access

In the case of symmetries with respect to 𝑛 independent linear hyperplanes, a stability versions of the Logarithmic Brunn–Minkowski Inequality and the Logarithmic Minkowski Inequality for convex bodies are established.

  • [1]

    J. F. Adams. Lectures on exceptional Lie groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1996. With a foreword by J. Peter May, Edited by Zafer Mahmud and Mamoru Mimura.

    • Search Google Scholar
    • Export Citation
  • [2]

    B. Andrews. Gauss curvature flow: the fate of the rolling stones. Invent. Math., 138(1):151161, 1999.

  • [3]

    S. Artstein-Avidan, D. I. Florentin, and A. Segal. Functional Brunn–Minkowski inequalities induced by polarity. Adv. Math., 364:107006, 19, 2020.

    • Search Google Scholar
    • Export Citation
  • [4]

    K. M. Ball. Phd thesis, university of cambridge. 1988.

  • [5]

    F. Barthe. Autour de l’inégalité de Brunn–Minkowski, mémoire d’habilitation. 2008.

  • [6]

    F. Barthe and D. Cordero-Erausquin. Invariances in variance estimates. Proc. Lond. Math. Soc. (3), 106(1):3364, 2013.

  • [7]

    F. Barthe and M. Fradelizi. The volume product of convex bodies with many hyperplane symmetries. Amer. J. Math., 135(2):311347, 2013.

    • Search Google Scholar
    • Export Citation
  • [8]

    F. Barthe, O. Guédon, Sh. Mendelson, and A. Naor. A probabilistic approach to the geometry of the l p n-ball. Ann. Probab., 33(2):480513, 2005.

    • Search Google Scholar
    • Export Citation
  • [9]

    G. Bianchi and H. Egnell. A note on the Sobolev inequality. J. Funct. Anal., 100(1):1824, 1991.

  • [10]

    B. Bollobás and I. Leader. Products of unconditional bodies. In Geometric aspects of functional analysis (Israel, 1992–1994), volume 77 of Oper. Theory Adv. Appl., pages 1324. Birkhäuser, Basel, 1995.

    • Search Google Scholar
    • Export Citation
  • [11]

    C. Borell. Convex set functions in 𝑑-space. Period. Math. Hungar., 6(2):111136, 1975.

  • [12]

    K. J. Böröczky. The logarithmic Minkowski conjecture and the 𝐿𝑝-Minkowski problem. In Harmonic analysis and convexity, volume 9 of Adv. Anal. Geom., pages 83118. De Gruyter, Berlin, 2023. arXiv:2210.00194.

    • Search Google Scholar
    • Export Citation
  • [13]

    K. J. Böröczky and A. De. Stability of the Prékopa–Leindler inequality for log-concave functions. Adv. Math., 386:article no. 107810, 2021.

    • Search Google Scholar
    • Export Citation
  • [14]

    K. J. Böröczky and A. De. Stable solution of the logarithmic Minkowski problem in the case of hyperplane symmetries. J. Differential Equations, 298:298322, 2021.

    • Search Google Scholar
    • Export Citation
  • [15]

    K. J. Böröczky and M. Henk. Cone-volume measure of general centered convex bodies. Adv. Math., 286:703721, 2016.

  • [16]

    K. J. Böröczky and M. Henk. Cone-volume measure and stability. Adv. Math., 306:2450, 2017.

  • [17]

    K. J. Böröczky and P. Kalantzopoulos. Log-Brunn–Minkowski inequality under symmetry. Trans. Amer. Math. Soc., 375(8):59876013, 2022.

    • Search Google Scholar
    • Export Citation
  • [18]

    K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang. The log-Brunn–Minkowski inequality. Adv. Math., 231(3-4):19741997, 2012.

  • [19]

    K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang. The logarithmic Minkowski problem. J. Amer. Math. Soc., 26(3):831852, 2013.

  • [20]

    H. J. Brascamp and E. H. Lieb. On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis, 22(4):366389, 1976.

    • Search Google Scholar
    • Export Citation
  • [21]

    U. Caglar and E. M. Werner. Stability results for some geometric inequalities and their functional versions. In Convexity and concentration, volume 161 of IMA Vol. Math. Appl., pages 541564. Springer, New York, 2017.

    • Search Google Scholar
    • Export Citation
  • [22]

    Sh. Chen, Y. Huang, Q.-R. Li, and J. Liu. The 𝐿𝑝-Brunn–Minkowski inequality for 𝑝 < 1. Adv. Math., 368:107166, 21, 2020.

  • [23]

    Sh. Chen, Q.-R. Li, and G. Zhu. The logarithmic Minkowski problem for non-symmetric measures. Trans. Amer. Math. Soc., 371(4):26232641, 2019.

    • Search Google Scholar
    • Export Citation
  • [24]

    Y. Chen. An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture. Geom. Funct. Anal., 31(1):3461, 2021.

    • Search Google Scholar
    • Export Citation
  • [25]

    K.-S. Chou and X.-J. Wang. The 𝐿𝑝-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math., 205(1):3383, 2006.

    • Search Google Scholar
    • Export Citation
  • [26]

    A. Colesanti. From the Brunn–Minkowski inequality to a class of Poincaré-type inequalities. Commun. Contemp. Math., 10(5):765772, 2008.

    • Search Google Scholar
    • Export Citation
  • [27]

    A. Colesanti, G. V. Livshyts, and A. Marsiglietti. On the stability of Brunn–Minkowski type inequalities. J. Funct. Anal., 273(3):11201139, 2017.

    • Search Google Scholar
    • Export Citation
  • [28]

    D. Cordero-Erausquin, M. Fradelizi, and B. Maurey. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal., 214(2):410427, 2004.

    • Search Google Scholar
    • Export Citation
  • [29]

    S. Dar. A Brunn–Minkowski-type inequality. Geom. Dedicata, 77(1):19, 1999.

  • [30]

    M. W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008.

    • Search Google Scholar
    • Export Citation
  • [31]

    V. I. Diskant. Stability of the solution of a Minkowski equation. Sibirsk. Mat. Ž., 14:669696, 669-673, 696, 1973.

  • [32]

    S. Dubuc. Critères de convexité et inégalités intégrales. Ann. Inst. Fourier (Grenoble), 27(1):x, 135165, 1977.

  • [33]

    R. Eldan and B. Klartag. Dimensionality and the stability of the Brunn–Minkowski inequality. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13(4):9751007, 2014.

    • Search Google Scholar
    • Export Citation
  • [34]

    A. Eskenazis and G. Moschidis. The dimensional Brunn–Minkowski inequality in Gauss space. J. Funct. Anal., 280(6):article no. 108914, 2021.

    • Search Google Scholar
    • Export Citation
  • [35]

    L. Esposito, N. Fusco, and C. Trombetti. A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4(4):619651, 2005.

    • Search Google Scholar
    • Export Citation
  • [36]

    A. Figalli, F. Maggi, and A. Pratelli. A refined Brunn–Minkowski inequality for convex sets. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26(6):25112519, 2009.

    • Search Google Scholar
    • Export Citation
  • [37]

    A. Figalli, F. Maggi, and A. Pratelli. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math., 182(1):167211, 2010.

    • Search Google Scholar
    • Export Citation
  • [38]

    A. Figalli and R. Neumayer. Gradient stability for the Sobolev inequality: the case 𝑝 ≥ 2. J. Eur. Math. Soc. (JEMS), 21(2):319354, 2019.

    • Search Google Scholar
    • Export Citation
  • [39]

    A. Figalli, P. van Huntum, and M. Tiba. Sharp quantitative stability of the Brunn– Minkowski inequality. arXiv:2310.20643.

  • [40]

    A. Figalli and Y. R.-Y. Zhang. Sharp gradient stability for the Sobolev inequality. Duke Math. J., 171(12):24072459, 2022.

  • [41]

    W. J. Firey. 𝑝-means of convex bodies. Math. Scand., 10:1724, 1962.

  • [42]

    W. J. Firey. Shapes of worn stones. Mathematika, 21:111, 1974.

  • [43]

    N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative isoperimetric inequality. Ann. of Math. (2), 168(3):941980, 2008.

  • [44]

    R. J. Gardner. The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39(3):355405, 2002.

  • [45]

    R. J. Gardner and A. Zvavitch. Gaussian Brunn–Minkowski inequalities. Trans. Amer. Math. Soc., 362(10):53335353, 2010.

  • [46]

    D. Ghilli and P. Salani. Quantitative Borell–Brascamp–Lieb inequalities for power concave functions. J. Convex Anal., 24(3):857888, 2017.

    • Search Google Scholar
    • Export Citation
  • [47]

    H. Groemer. On the Brunn–Minkowski theorem. Geom. Dedicata, 27(3):357371, 1988.

  • [48]

    H. Groemer. Stability of geometric inequalities. In Handbook of convex geometry, Vol. A, B, pages 125150. North-Holland, Amsterdam, 1993.

    • Search Google Scholar
    • Export Citation
  • [49]

    M. Gromov and V. D. Milman. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math., 62(3):263282, 1987.

    • Search Google Scholar
    • Export Citation
  • [50]

    P. Guan. Lei Ni. Entropy and a convergence theorem for Gauss curvature flow in high dimension. J. Eur. Math. Soc. (JEMS), 19(12):37353761, 2017.

    • Search Google Scholar
    • Export Citation
  • [51]

    D. Harutyunyan. Quantitative anisotropic isoperimetric and Brunn–Minkowski inequalities for convex sets with improved defect estimates. ESAIM Control Optim. Calc. Var., 24(2):479494, 2018.

    • Search Google Scholar
    • Export Citation
  • [52]

    B. He, G. Leng, and K. Li. Projection problems for symmetric polytopes. Adv. Math., 207(1):7390, 2006.

  • [53]

    M. Henk and E. Linke. Cone-volume measures of polytopes. Adv. Math., 253:5062, 2014.

  • [54]

    M. Henk, A. Schürmann, and J. M. Wills. Ehrhart polynomials and successive minima. Mathematika, 52(1-2):116 (2006), 2005.

  • [55]

    J. Hosle, A. V. Kolesnikov, and G. V. Livshyts. On the 𝐿𝑝-Brunn–Minkowski and dimensional Brunn–Minkowski conjectures for log-concave measures. J. Geom. Anal., 31(6):57995836, 2021.

    • Search Google Scholar
    • Export Citation
  • [56]

    D. Hug, E. Lutwak, D. Yang, and G. Zhang. On the 𝐿𝑝 Minkowski problem for polytopes. Discrete Comput. Geom., 33(4):699715, 2005.

    • Search Google Scholar
    • Export Citation
  • [57]

    J. E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 1990.

    • Search Google Scholar
    • Export Citation
  • [58]

    M. N. Ivaki. Deforming a convex hypersurface with low entropy by its Gauss curvature. J. Geom. Anal., 27(2):12861294, 2017.

  • [59]

    M. N. Ivaki and E. Milman. 𝐿𝑝-Minkowski problem under curvature pinching. Int. Math. Res. Not. IMRN, (10):86388652, 2024.

  • [60]

    K. Jochemko and R. Sanyal. Combinatorial mixed valuations. Adv. Math., 319:630652, 2017.

  • [61]

    K. Jochemko and R. Sanyal. Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem. J. Eur. Math. Soc. (JEMS), 20(9):21812208, 2018.

    • Search Google Scholar
    • Export Citation
  • [62]

    D. M. Kane. The Gaussian surface area and noise sensitivity of degree-d polynomial threshold functions. In 25th Annual IEEE Conference on Computational Complexity—CCC 2010, pages 205210. IEEE Computer Soc., Los Alamitos, CA, 2010.

    • Search Google Scholar
    • Export Citation
  • [63]

    B. Klartag. Logarithmic bounds for isoperimetry and slices of convex sets. Ars Inven. Anal., 2023.

  • [64]

    A. V. Kolesnikov. Mass transportation functionals on the sphere with applications to the logarithmic Minkowski problem. Mosc. Math. J., 20(1):6791, 2020.

    • Search Google Scholar
    • Export Citation
  • [65]

    A. V. Kolesnikov and G. V. Livshyts. On the local version of the Log-Brunn–Minkowski conjecture and some new related geometric inequalities. Int. Math. Res. Not. IMRN, (18):1442714453, 2022.

    • Search Google Scholar
    • Export Citation
  • [66]

    A. V. Kolesnikov and E. Milman. Local 𝐿𝑝-Brunn–Minkowski inequalities for 𝑝 < 1. Mem. Amer. Math. Soc., 277(1360):v+78, 2022.

    • Search Google Scholar
    • Export Citation
  • [67]

    L. Leindler. On a certain converse of Hölder’s inequality. II. Acta Sci. Math. (Szeged), 33(3-4):217223, 1972.

  • [68]

    M. Ludwig, J. Xiao, and G. Zhang. Sharp convex Lorentz–Sobolev inequalities. Math. Ann., 350(1):169197, 2011.

  • [69]

    E. Lutwak. The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom., 38(1):131150, 1993.

    • Search Google Scholar
    • Export Citation
  • [70]

    E. Lutwak. Selected affine isoperimetric inequalities. In Handbook of convex geometry, Vol. A, B, pages 151176. North-Holland, Amsterdam, 1993.

    • Search Google Scholar
    • Export Citation
  • [71]

    E. Lutwak. The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math., 118(2):244294, 1996.

  • [72]

    E. Lutwak, D. Yang, and G. Zhang. The Brunn–Minkowski–Firey inequality for nonconvex sets. Adv. in Appl. Math., 48(2):407413, 2012.

    • Search Google Scholar
    • Export Citation
  • [73]

    E. Milman. Centro-affine differential geometry and the log-minkowski problem. J. EMS, 2024. Accepted. arXiv:2104.12408.

  • [74]

    E. Milman. A sharp centro-affine isospectral inequality of Szegö–Weinberger type and the 𝐿𝑝-Minkowski problem. J. Differential Geom., 127(1):373408, 2024.

    • Search Google Scholar
    • Export Citation
  • [75]

    A. Naor. The surface measure and cone measure on the sphere of l p n. Trans. Amer. Math. Soc., 359(3):10451079, 2007.

  • [76]

    P. Nayar and T. Tkocz. A note on a Brunn–Minkowski inequality for the Gaussian measure. Proc. Amer. Math. Soc., 141(11):40274030, 2013.

    • Search Google Scholar
    • Export Citation
  • [77]

    P. Nayar and T. Tkocz. On a convexity property of sections of the cross-polytope. Proc. Amer. Math. Soc., 148(3):12711278, 2020.

  • [78]

    V. H. Nguyen. New approach to the affine Pólya–Szegö principle and the stability version of the affine Sobolev inequality. Adv. Math., 302:10801110, 2016.

    • Search Google Scholar
    • Export Citation
  • [79]

    G. Paouris and E. M. Werner. Relative entropy of cone measures and 𝐿𝑝 centroid bodies. Proc. Lond. Math. Soc. (3), 104(2):253286, 2012.

    • Search Google Scholar
    • Export Citation
  • [80]

    A. Prékopa. Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged), 32:301316, 1971.

  • [81]

    A. Prékopa. On logarithmic concave measures and functions. Acta Sci. Math. (Szeged), 34:335343, 1973.

  • [82]

    E. Putterman. Equivalence of the local and global versions of the 𝐿𝑝-Brunn–Minkowski inequality. J. Funct. Anal., 280(9):article no. 108956, 2021.

    • Search Google Scholar
    • Export Citation
  • [83]

    A. Rossi and P. Salani. Stability for Borell–Brascamp–Lieb inequalities. In Geometric aspects of functional analysis, volume 2169 of Lecture Notes in Math., pages 339363. Springer, Cham, 2017.

    • Search Google Scholar
    • Export Citation
  • [84]

    L. Rotem. A letter: The log-Brunn–Minkowski inequality for complex bodies. 2014. arXiv:1412.5321v1.

  • [85]

    C. Saroglou. Remarks on the conjectured log-Brunn–Minkowski inequality. Geom. Dedicata, 177:353365, 2015.

  • [86]

    R. Schneider. Convex bodies: the Brunn–Minkowski theory, volume 151 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge, expanded edition, 2014.

    • Search Google Scholar
    • Export Citation
  • [87]

    A. Segal. Remark on stability of Brunn–Minkowski and isoperimetric inequalities for convex bodies. In Geometric aspects of functional analysis, volume 2050 of Lecture Notes in Math., pages 381391. Springer, Heidelberg, 2012.

    • Search Google Scholar
    • Export Citation
  • [88]

    A. Stancu. The discrete planar 𝐿0-Minkowski problem. Adv. Math., 167(1):160174, 2002.

  • [89]

    T. Tao and V. Vu. Additive combinatorics, volume 105 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 2006.

  • [90]

    B. Uhrin. Curvilinear extensions of the Brunn–Minkowski–Lusternik inequality. Adv. Math., 109(2):288312, 1994.

  • [91]

    R. van Handel. The local logarithmic Brunn–Minkowski inequality for zonoids. In Geometric aspects of functional analysis, volume 2327 of Lecture Notes in Math., pages 355379. Springer, Cham, 2023.

    • Search Google Scholar
    • Export Citation
  • [92]

    E. B. Vinberg. Discrete linear groups generated by reflections. Math. USSR Izvestia, 5:10831119, 1971.

  • [93]

    T. Wang. The affine Pólya–Szegö principle: equality cases and stability. J. Funct. Anal., 265(8):17281748, 2013.

  • [94]

    D. Xi and G. Leng. Dar’s conjecture and the log-Brunn–Minkowski inequality. J. Differential Geom., 103(1):145189, 2016.

  • [95]

    G. Xiong. Extremum problems for the cone volume functional of convex polytopes. Adv. Math., 225(6):32143228, 2010.

  • [96]

    G. Zhang. The affine Sobolev inequality. J. Differential Geom., 53(1):183202, 1999.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)