In the case of symmetries with respect to 𝑛 independent linear hyperplanes, a stability versions of the Logarithmic Brunn–Minkowski Inequality and the Logarithmic Minkowski Inequality for convex bodies are established.
J. F. Adams. Lectures on exceptional Lie groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1996. With a foreword by J. Peter May, Edited by Zafer Mahmud and Mamoru Mimura.
B. Andrews. Gauss curvature flow: the fate of the rolling stones. Invent. Math., 138(1):151–161, 1999.
S. Artstein-Avidan, D. I. Florentin, and A. Segal. Functional Brunn–Minkowski inequalities induced by polarity. Adv. Math., 364:107006, 19, 2020.
F. Barthe. Autour de l’inégalité de Brunn–Minkowski, mémoire d’habilitation. 2008.
F. Barthe and D. Cordero-Erausquin. Invariances in variance estimates. Proc. Lond. Math. Soc. (3), 106(1):33–64, 2013.
F. Barthe and M. Fradelizi. The volume product of convex bodies with many hyperplane symmetries. Amer. J. Math., 135(2):311–347, 2013.
F. Barthe, O. Guédon, Sh. Mendelson, and A. Naor. A probabilistic approach to the geometry of the l p n-ball. Ann. Probab., 33(2):480–513, 2005.
G. Bianchi and H. Egnell. A note on the Sobolev inequality. J. Funct. Anal., 100(1):18–24, 1991.
B. Bollobás and I. Leader. Products of unconditional bodies. In Geometric aspects of functional analysis (Israel, 1992–1994), volume 77 of Oper. Theory Adv. Appl., pages 13–24. Birkhäuser, Basel, 1995.
C. Borell. Convex set functions in 𝑑-space. Period. Math. Hungar., 6(2):111–136, 1975.
K. J. Böröczky. The logarithmic Minkowski conjecture and the 𝐿𝑝-Minkowski problem. In Harmonic analysis and convexity, volume 9 of Adv. Anal. Geom., pages 83–118. De Gruyter, Berlin, 2023. arXiv:2210.00194.
K. J. Böröczky and A. De. Stability of the Prékopa–Leindler inequality for log-concave functions. Adv. Math., 386:article no. 107810, 2021.
K. J. Böröczky and A. De. Stable solution of the logarithmic Minkowski problem in the case of hyperplane symmetries. J. Differential Equations, 298:298–322, 2021.
K. J. Böröczky and M. Henk. Cone-volume measure of general centered convex bodies. Adv. Math., 286:703–721, 2016.
K. J. Böröczky and M. Henk. Cone-volume measure and stability. Adv. Math., 306:24–50, 2017.
K. J. Böröczky and P. Kalantzopoulos. Log-Brunn–Minkowski inequality under symmetry. Trans. Amer. Math. Soc., 375(8):5987–6013, 2022.
K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang. The log-Brunn–Minkowski inequality. Adv. Math., 231(3-4):1974–1997, 2012.
K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang. The logarithmic Minkowski problem. J. Amer. Math. Soc., 26(3):831–852, 2013.
H. J. Brascamp and E. H. Lieb. On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis, 22(4):366–389, 1976.
U. Caglar and E. M. Werner. Stability results for some geometric inequalities and their functional versions. In Convexity and concentration, volume 161 of IMA Vol. Math. Appl., pages 541–564. Springer, New York, 2017.
Sh. Chen, Y. Huang, Q.-R. Li, and J. Liu. The 𝐿𝑝-Brunn–Minkowski inequality for 𝑝 < 1. Adv. Math., 368:107166, 21, 2020.
Sh. Chen, Q.-R. Li, and G. Zhu. The logarithmic Minkowski problem for non-symmetric measures. Trans. Amer. Math. Soc., 371(4):2623–2641, 2019.
Y. Chen. An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture. Geom. Funct. Anal., 31(1):34–61, 2021.
K.-S. Chou and X.-J. Wang. The 𝐿𝑝-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math., 205(1):33–83, 2006.
A. Colesanti. From the Brunn–Minkowski inequality to a class of Poincaré-type inequalities. Commun. Contemp. Math., 10(5):765–772, 2008.
A. Colesanti, G. V. Livshyts, and A. Marsiglietti. On the stability of Brunn–Minkowski type inequalities. J. Funct. Anal., 273(3):1120–1139, 2017.
D. Cordero-Erausquin, M. Fradelizi, and B. Maurey. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal., 214(2):410–427, 2004.
S. Dar. A Brunn–Minkowski-type inequality. Geom. Dedicata, 77(1):1–9, 1999.
M. W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008.
V. I. Diskant. Stability of the solution of a Minkowski equation. Sibirsk. Mat. Ž., 14:669–696, 669-673, 696, 1973.
S. Dubuc. Critères de convexité et inégalités intégrales. Ann. Inst. Fourier (Grenoble), 27(1):x, 135–165, 1977.
R. Eldan and B. Klartag. Dimensionality and the stability of the Brunn–Minkowski inequality. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13(4):975–1007, 2014.
A. Eskenazis and G. Moschidis. The dimensional Brunn–Minkowski inequality in Gauss space. J. Funct. Anal., 280(6):article no. 108914, 2021.
L. Esposito, N. Fusco, and C. Trombetti. A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4(4):619–651, 2005.
A. Figalli, F. Maggi, and A. Pratelli. A refined Brunn–Minkowski inequality for convex sets. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26(6):2511–2519, 2009.
A. Figalli, F. Maggi, and A. Pratelli. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math., 182(1):167–211, 2010.
A. Figalli and R. Neumayer. Gradient stability for the Sobolev inequality: the case 𝑝 ≥ 2. J. Eur. Math. Soc. (JEMS), 21(2):319–354, 2019.
A. Figalli, P. van Huntum, and M. Tiba. Sharp quantitative stability of the Brunn– Minkowski inequality. arXiv:2310.20643.
A. Figalli and Y. R.-Y. Zhang. Sharp gradient stability for the Sobolev inequality. Duke Math. J., 171(12):2407–2459, 2022.
W. J. Firey. 𝑝-means of convex bodies. Math. Scand., 10:17–24, 1962.
W. J. Firey. Shapes of worn stones. Mathematika, 21:1–11, 1974.
N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative isoperimetric inequality. Ann. of Math. (2), 168(3):941–980, 2008.
R. J. Gardner. The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39(3):355–405, 2002.
R. J. Gardner and A. Zvavitch. Gaussian Brunn–Minkowski inequalities. Trans. Amer. Math. Soc., 362(10):5333–5353, 2010.
D. Ghilli and P. Salani. Quantitative Borell–Brascamp–Lieb inequalities for power concave functions. J. Convex Anal., 24(3):857–888, 2017.
H. Groemer. On the Brunn–Minkowski theorem. Geom. Dedicata, 27(3):357–371, 1988.
H. Groemer. Stability of geometric inequalities. In Handbook of convex geometry, Vol. A, B, pages 125–150. North-Holland, Amsterdam, 1993.
M. Gromov and V. D. Milman. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math., 62(3):263–282, 1987.
P. Guan. Lei Ni. Entropy and a convergence theorem for Gauss curvature flow in high dimension. J. Eur. Math. Soc. (JEMS), 19(12):3735–3761, 2017.
D. Harutyunyan. Quantitative anisotropic isoperimetric and Brunn–Minkowski inequalities for convex sets with improved defect estimates. ESAIM Control Optim. Calc. Var., 24(2):479–494, 2018.
B. He, G. Leng, and K. Li. Projection problems for symmetric polytopes. Adv. Math., 207(1):73–90, 2006.
M. Henk and E. Linke. Cone-volume measures of polytopes. Adv. Math., 253:50–62, 2014.
M. Henk, A. Schürmann, and J. M. Wills. Ehrhart polynomials and successive minima. Mathematika, 52(1-2):1–16 (2006), 2005.
J. Hosle, A. V. Kolesnikov, and G. V. Livshyts. On the 𝐿𝑝-Brunn–Minkowski and dimensional Brunn–Minkowski conjectures for log-concave measures. J. Geom. Anal., 31(6):5799–5836, 2021.
D. Hug, E. Lutwak, D. Yang, and G. Zhang. On the 𝐿𝑝 Minkowski problem for polytopes. Discrete Comput. Geom., 33(4):699–715, 2005.
J. E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 1990.
M. N. Ivaki. Deforming a convex hypersurface with low entropy by its Gauss curvature. J. Geom. Anal., 27(2):1286–1294, 2017.
M. N. Ivaki and E. Milman. 𝐿𝑝-Minkowski problem under curvature pinching. Int. Math. Res. Not. IMRN, (10):8638–8652, 2024.
K. Jochemko and R. Sanyal. Combinatorial mixed valuations. Adv. Math., 319:630–652, 2017.
K. Jochemko and R. Sanyal. Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem. J. Eur. Math. Soc. (JEMS), 20(9):2181–2208, 2018.
D. M. Kane. The Gaussian surface area and noise sensitivity of degree-d polynomial threshold functions. In 25th Annual IEEE Conference on Computational Complexity—CCC 2010, pages 205–210. IEEE Computer Soc., Los Alamitos, CA, 2010.
B. Klartag. Logarithmic bounds for isoperimetry and slices of convex sets. Ars Inven. Anal., 2023.
A. V. Kolesnikov. Mass transportation functionals on the sphere with applications to the logarithmic Minkowski problem. Mosc. Math. J., 20(1):67–91, 2020.
A. V. Kolesnikov and G. V. Livshyts. On the local version of the Log-Brunn–Minkowski conjecture and some new related geometric inequalities. Int. Math. Res. Not. IMRN, (18):14427–14453, 2022.
A. V. Kolesnikov and E. Milman. Local 𝐿𝑝-Brunn–Minkowski inequalities for 𝑝 < 1. Mem. Amer. Math. Soc., 277(1360):v+78, 2022.
L. Leindler. On a certain converse of Hölder’s inequality. II. Acta Sci. Math. (Szeged), 33(3-4):217–223, 1972.
M. Ludwig, J. Xiao, and G. Zhang. Sharp convex Lorentz–Sobolev inequalities. Math. Ann., 350(1):169–197, 2011.
E. Lutwak. The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom., 38(1):131–150, 1993.
E. Lutwak. Selected affine isoperimetric inequalities. In Handbook of convex geometry, Vol. A, B, pages 151–176. North-Holland, Amsterdam, 1993.
E. Lutwak. The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math., 118(2):244–294, 1996.
E. Lutwak, D. Yang, and G. Zhang. The Brunn–Minkowski–Firey inequality for nonconvex sets. Adv. in Appl. Math., 48(2):407–413, 2012.
E. Milman. Centro-affine differential geometry and the log-minkowski problem. J. EMS, 2024. Accepted. arXiv:2104.12408.
E. Milman. A sharp centro-affine isospectral inequality of Szegö–Weinberger type and the 𝐿𝑝-Minkowski problem. J. Differential Geom., 127(1):373–408, 2024.
A. Naor. The surface measure and cone measure on the sphere of l p n. Trans. Amer. Math. Soc., 359(3):1045–1079, 2007.
P. Nayar and T. Tkocz. A note on a Brunn–Minkowski inequality for the Gaussian measure. Proc. Amer. Math. Soc., 141(11):4027–4030, 2013.
P. Nayar and T. Tkocz. On a convexity property of sections of the cross-polytope. Proc. Amer. Math. Soc., 148(3):1271–1278, 2020.
V. H. Nguyen. New approach to the affine Pólya–Szegö principle and the stability version of the affine Sobolev inequality. Adv. Math., 302:1080–1110, 2016.
G. Paouris and E. M. Werner. Relative entropy of cone measures and 𝐿𝑝 centroid bodies. Proc. Lond. Math. Soc. (3), 104(2):253–286, 2012.
A. Prékopa. Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged), 32:301–316, 1971.
A. Prékopa. On logarithmic concave measures and functions. Acta Sci. Math. (Szeged), 34:335–343, 1973.
E. Putterman. Equivalence of the local and global versions of the 𝐿𝑝-Brunn–Minkowski inequality. J. Funct. Anal., 280(9):article no. 108956, 2021.
A. Rossi and P. Salani. Stability for Borell–Brascamp–Lieb inequalities. In Geometric aspects of functional analysis, volume 2169 of Lecture Notes in Math., pages 339–363. Springer, Cham, 2017.
L. Rotem. A letter: The log-Brunn–Minkowski inequality for complex bodies. 2014. arXiv:1412.5321v1.
C. Saroglou. Remarks on the conjectured log-Brunn–Minkowski inequality. Geom. Dedicata, 177:353–365, 2015.
R. Schneider. Convex bodies: the Brunn–Minkowski theory, volume 151 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge, expanded edition, 2014.
A. Segal. Remark on stability of Brunn–Minkowski and isoperimetric inequalities for convex bodies. In Geometric aspects of functional analysis, volume 2050 of Lecture Notes in Math., pages 381–391. Springer, Heidelberg, 2012.
A. Stancu. The discrete planar 𝐿0-Minkowski problem. Adv. Math., 167(1):160–174, 2002.
T. Tao and V. Vu. Additive combinatorics, volume 105 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 2006.
B. Uhrin. Curvilinear extensions of the Brunn–Minkowski–Lusternik inequality. Adv. Math., 109(2):288–312, 1994.
R. van Handel. The local logarithmic Brunn–Minkowski inequality for zonoids. In Geometric aspects of functional analysis, volume 2327 of Lecture Notes in Math., pages 355–379. Springer, Cham, 2023.
E. B. Vinberg. Discrete linear groups generated by reflections. Math. USSR Izvestia, 5:1083–1119, 1971.
T. Wang. The affine Pólya–Szegö principle: equality cases and stability. J. Funct. Anal., 265(8):1728–1748, 2013.
D. Xi and G. Leng. Dar’s conjecture and the log-Brunn–Minkowski inequality. J. Differential Geom., 103(1):145–189, 2016.
G. Xiong. Extremum problems for the cone volume functional of convex polytopes. Adv. Math., 225(6):3214–3228, 2010.
G. Zhang. The affine Sobolev inequality. J. Differential Geom., 53(1):183–202, 1999.