A long standing Total Coloring Conjecture (TCC) asserts that every graph is total colorable using its maximum degree plus two colors. A graph is type-1 (or type-2) if it has a total coloring using maximum degree plus one (or maximum degree plus two) colors. For a graph 𝐺 with 𝑚 vertices and for a family of graphs {𝐻1, 𝐻2, … , 𝐻𝑚}, denote
S. Barik and G. Sahoo. On the Laplacian spectra of some variants of corona. Linear Algebra Appl., 512:32–47, 2017.
M. Basavaraju, L. S. Chandran, M. C. Francis, and A. Naskar. Weak total coloring conjecture and Hadwiger’s conjecture on total graphs. Electron. J. Combin., 31(1): article no. 1.4, 2024.
M. Behzad. Graphs and their chromatic numbers. PhD thesis, Michigan State University, 1965.
M. Behzad, G. Chartrand, and J. K. Cooper, Jr. The colour numbers of complete graphs. J. London Math. Soc., 42:226–228, 1967.
M. Chen, X. Guo, H. Li, and L. Zhang. Total chromatic number of generalized Mycielski graphs. Discrete Math., 334:48–51, 2014.
A. R. Fiuj Laali, H. Haj Seyyed Javadi, and Dariush Kiani
R. Frucht and F. Harary. On the corona of two graphs. Aequationes Math., 4:322–325, 1970.
H. Furmańczyk and R. Zuazua. Equitable total coloring of corona of cubic graphs. Discussiones Mathematicae Graph Theory, 41(4):1147, 2021.
H. Furmańczyk and R. Zuazua. Adjacent vertex distinguishing total coloring of the corona product of graphs. arXiv, 23 Aug 2022. https://arxiv.org/abs/2208.10884.
Y. Hou and W.-C. Shiu. The spectrum of the edge corona of two graphs. Electron. J. Linear Algebra, 20:586–594, 2010.
G. Indulal. The spectrum of neighborhood corona of graphs. Kragujevac J. Math., 35(3):493–500, 2011.
T. Kavaskar and S. Sukumaran. Total coloring of some graph operations. In Algorithms and discrete applied mathematics, volume 14508 of Lecture Notes in Comput. Sci., pages 302–312. Springer, Cham, 2024.
X. Liu and P. Lu. Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae. Linear Algebra Appl., 438(8):3547–3559, 2013.
P. Lu, K. Gao, and Y. Wu. Signless Laplacian spectrum of a class of generalized corona and its application. Discrete Math. Algorithms Appl., 10(5):1850060, 12, 2018.
C. J. H. McDiarmid and A. Sánchez-Arroyo. Total colouring regular bipartite graphs is NP-hard. volume 124, pages 155–162. 1994. Graphs and combinatorics (Qawra, 1990).
S. Mohan, J. Geetha, and K. Somasundaram. Total coloring of the corona product of two graphs. Australas. J. Combin., 68:15–22, 2017.
R. Rajkumar and M. Gayathri. Spectra of generalized corona of graphs constrained by vertex subsets. Matematiche (Catania), 76(1):175–205, 2021.
A. Sánchez-Arroyo. Determining the total colouring number is NP-hard. Discrete Math., 78(3):315–319, 1989.
M. A. Seoud. Total chromatic numbers. Appl. Math. Lett., 5(6):37–39, 1992.
R. Vignesh, J. Geetha, and K. Somasundaram. Total coloring conjecture for vertex, edge and neighborhood corona products of graphs. Discrete Math. Algorithms Appl., 11(1):1950014, 9, 2019.