Author:
Adrian Dumitrescu Algoresearch L.L.C., Milwaukee, WI, USA

Search for other papers by Adrian Dumitrescu in
Current site
Google Scholar
PubMed
Close
Restricted access

We revisit the algorithmic problem of finding a triangle in a graph (Triangle Detection), and examine its relation to other problems such as 3Sum, Independent Set, and Graph Coloring. We obtain several new algorithms:

(I) A simple randomized algorithm for finding a triangle in a graph. As an application, we study a question of Pˇatraşcu (2010) regarding the triangle detection problem.

(II) An algorithm which given a graph 𝐺 = (𝑉 , 𝐸) performs one of the following tasks in 𝑂(𝑚 + 𝑛) (i.e., linear) time: (i) compute a Ω(1/√𝑛)-approximation of a maximum independent set in 𝐺 or (ii) find a triangle in 𝐺. The run-time is faster than that for any previous method for each of these tasks.

(III) An algorithm which given a graph 𝐺 = (𝑉 , 𝐸) performs one of the following tasks in 𝑂(𝑚+𝑛3/2) time: (i) compute √𝑛-approximation for Graph Coloring of 𝐺 or (ii) find a triangle in 𝐺. The run-time is faster than that for any previous method for each of these tasks on dense graphs, with 𝑚 = (𝑛9/8).

(IV) Results (II) and (III) above suggest the following broader research direction: if it is difficult to find (A) or (B) separately, can one find one of the two efficiently? This motivates the dual pair concept we introduce. We provide several instances of dual-pair approximation, relating Longest Path, (1,2)-TSP, and other NP-hard problems.

  • [1]

    A. Abboud, V. V. Williams, and H. Yu. Matching triangles and basing hardness on an extremely popular conjecture. SIAM J. Comput., 47(3):10981122, 2018.

    • Search Google Scholar
    • Export Citation
  • [2]

    A. Adamaszek, M. Mnich, and K. Paluch. New approximation algorithms for (1, 2)-TSP. In 45th International Colloquium on Automata, Languages, and Programming, volume 107 of LIPIcs. Leibniz Int. Proc. Inform., page article no. 9. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

    • Search Google Scholar
    • Export Citation
  • [3]

    M. Ajtai, J. Komlós, and E. Szemerédi. A note on Ramsey numbers. J. Combin. Theory Ser. A, 29(3):354360, 1980.

  • [4]

    N. Alon, R. Yuster, and U. Zwick. Color-coding. J. Assoc. Comput. Mach., 42(4):844856, 1995.

  • [5]

    N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica, 17(3):209223, 1997.

  • [6]

    R. Bar-Yehuda and S. Even. On approximating a vertex cover for planar graphs. Proc. 14th Annual ACM Symposium on Theory of Computing (STOC), pages 303309, 1982.

    • Search Google Scholar
    • Export Citation
  • [7]

    I. Baran, E. D. Demaine, and M. Pˇatraşcu. Subquadratic algorithms for 3SUM. Algorithmica, 50(4):584596, 2008.

  • [8]

    S. Bereg and A. Dumitrescu. The lifting model for reconfiguration. Discrete Comput. Geom., 35(4):653669, 2006.

  • [9]

    P. Berman and M. Karpinski. 8/7-approximation algorithm for (1, 2)-TSP. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 641648. ACM, New York, 2006.

    • Search Google Scholar
    • Export Citation
  • [10]

    H. L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms, 14(1):123, 1993.

  • [11]

    B. Bollobás. Modern Graph Theory, volume 184 of Grad. Texts in Math. Springer, New York, 1998.

  • [12]

    N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput., 14(1):210223, 1985.

  • [13]

    D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Comput., 9(3):251280, 1990.

  • [14]

    D. de Caen. An upper bound on the sum of squares of degrees in a graph. Discrete Math., 185(1-3):245248, 1998.

  • [15]

    R. Duan, H. Wu, and R. Zhou. Faster matrix multiplication via asymmetric hashing. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science—FOCS 2023, pages 21292138. IEEE Computer Soc., Los Alamitos, CA, 2023.

    • Search Google Scholar
    • Export Citation
  • [16]

    L. Engebretsen and J. Holmerin. Clique is hard to approximate within 𝑛1−𝑜(1). In Automata, languages and programming (Geneva, 2000), volume 1853 of Lecture Notes in Comput. Sci., pages 212. Springer, Berlin, 2000.

    • Search Google Scholar
    • Export Citation
  • [17]

    D. Eppstein. Paired approximation problems and incompatible inapproximabilities. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 10761086. SIAM, Philadelphia, PA, 2010.

    • Search Google Scholar
    • Export Citation
  • [18]

    U. Feige. Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math., 18(2):219225, 2004.

  • [19]

    H. N. Gabow. Finding paths and cycles of superpolylogarithmic length. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, STOC’04, page 407416. ACM, jun 2004.

    • Search Google Scholar
    • Export Citation
  • [20]

    A. Gajentaan and M. H. Overmars. On a class of 𝑂(𝑛2) problems in computational geometry. Comput. Geom., 45(4):140152, 2012.

  • [21]

    M. R Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York, 1979.

    • Search Google Scholar
    • Export Citation
  • [22]

    J. Gimbel and C. Thomassen Coloring triangle-free graphs with fixed size. Discrete Math., 219(1-3):275277, 2000.

  • [23]

    O. Gold and M. Sharir. Improved bounds for 3SUM, 𝑘-SUM, and linear degeneracy. In 25th European Symposium on Algorithms, volume 87 of LIPIcs. Leibniz Int. Proc. Inform., page article no. 42. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017.

    • Search Google Scholar
    • Export Citation
  • [24]

    A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. J. ACM, 65(4): article no. 22, 2018.

  • [25]

    M. M. Halldórsson. A still better performance guarantee for approximate graph coloring. Inform. Process. Lett., 45(1):1923, 1993.

  • [26]

    D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems, pages 94143. PWS Publishing Co., 1997. (D. S. Hochbaum, editor).

    • Search Google Scholar
    • Export Citation
  • [27]

    A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput., 7(4):413423, 1978.

  • [28]

    M. Karpinski, M. Lampis, and R. Schmied. New inapproximability bounds for TSP. J. Comput. System Sci., 81(8):16651677, 2015.

  • [29]

    M. Karpinski and R. Schmied. On approximation lower bounds for tsp with bounded metrics. Electronic Colloquium on Computational Complexity, 2012. TR12-008.

    • Search Google Scholar
    • Export Citation
  • [30]

    J. H. Kim. The Ramsey number 𝑅(3, 𝑡) has order of magnitude 𝑡2/ log 𝑡. Random Structures Algorithms, 7(3):173207, 1995.

  • [31]

    T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced subgraphs efficiently. Inform. Process. Lett., 74(3-4):115121, 2000.

    • Search Google Scholar
    • Export Citation
  • [32]

    T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 12721287. ACM, New York, 2016.

    • Search Google Scholar
    • Export Citation
  • [33]

    C. Lund and M. Yannakakis. The approximation of maximum subgraph problems. In Proc. 20th International Colloquium on Automata, Languages, and Programming, volume 700 of LNCS, pages 4051, 1993. ICALP.

    • Search Google Scholar
    • Export Citation
  • [34]

    J. Matoušek. Thirty-three Miniatures, volume 53 of Stud. Math. Libr. American Mathematical Society, Providence, RI, 2010. Mathematical and algorithmic applications of linear algebra.

    • Search Google Scholar
    • Export Citation
  • [35]

    M. Mitzenmacher and E. Upfal. Probability and computing, Randomization and probabilistic techniques in algorithms and data analysis. Cambridge University Press, Cambridge, second edition, 2017.

    • Search Google Scholar
    • Export Citation
  • [36]

    C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two. Math. Oper. Res., 18(1):111, 1993.

  • [37]

    M. Pˇatraşcu. Towards polynomial lower bounds for dynamic problems. In STOC’10— Proceedings of the 2010 ACM International Symposium on Theory of Computing, pages 603609. ACM, New York, 2010.

    • Search Google Scholar
    • Export Citation
  • [38]

    S. Poljak. A note on stable sets and colorings of graphs. Comment. Math. Univ. Carolinae, 15:307309, 1974.

  • [39]

    P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48:436452, 1941.

  • [40]

    V. Vassilevska, R. Williams, and Shan L. M. Woo. Confronting hardness using a hybrid approach. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 110. ACM, New York, 2006.

    • Search Google Scholar
    • Export Citation
  • [41]

    D. B. West. Combinatorial Mathematics. Cambridge University Press, Cambridge, 2021.

  • [42]

    V. V. Williams, Y. Xu, Z. Xu, and R. Zhou. New bounds for matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 37923835. SIAM, Philadelphia, PA, 2024.

    • Search Google Scholar
    • Export Citation
  • [43]

    D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, Cambridge, 2011.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)