Author:
John Machacek Department of Mathematics and Computer Science, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA

Search for other papers by John Machacek in
Current site
Google Scholar
PubMed
Close
Restricted access

Breuer and Klivans defined a diverse class of scheduling problems in terms of Boolean formulas with atomic clauses that are inequalities. We consider what we call graph-like scheduling problems. These are Boolean formulas that are conjunctions of disjunctions of atomic clauses (𝑥𝑖 ≠ 𝑥𝑗). These problems generalize proper coloring in graphs and hypergraphs. We focus on the existence of a solution with all 𝑥i taking the value of 0 or 1 (i.e. problems analogous to the bipartite case). When a graph-like scheduling problem has such a solution, we say it has property B just as is done for 2-colorable hypergraphs. We define the notion of a 𝜆-uniform graph-like scheduling problem for any integer partition 𝜆. Some bounds are attained for the size of the smallest 𝜆-uniform graph-like scheduling problems without B. We make use of both random and constructive methods to obtain bounds. Just as in the case of hypergraphs finding tight bounds remains an open problem.

  • [1]

    H. L. Abbott and L. Moser. On a combinatorial problem of Erdős and Hajnal. Canad. Math. Bull., 7:177181, 1964.

  • [2]

    Sachin Aglave, V. A. Amarnath, Saswata Shannigrahi, and Shwetank Singh. Improved bounds for uniform hypergraphs without property B. Australas. J. Combin., 76(part 1):7386, 2020.

    • Search Google Scholar
    • Export Citation
  • [3]

    Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, second edition, 2000. With an appendix on the life and work of Paul Erdős.

    • Search Google Scholar
    • Export Citation
  • [4]

    Jean-Christophe Aval, Nantel Bergeron, and John Machacek. New invariants for permutations, orders and graphs. Adv. in Appl. Math., 121:102080, 30, 2020.

    • Search Google Scholar
    • Export Citation
  • [5]

    Felix Bernstein. Zur theorie der trigonometrische reihen. Leipz. Ber., 60:325328, 1908.

  • [6]

    Felix Breuer and Caroline J. Klivans. Scheduling problems. J. Combin. Theory Ser. A, 139:5979, 2016.

  • [7]

    Danila D. Cherkashin and Jakub Kozik. A note on random greedy coloring of uniform hypergraphs. Random Structures Algorithms, 47(3):407413, 2015.

    • Search Google Scholar
    • Export Citation
  • [8]

    Richard Conway, William L. Maxwell, and Louis W. Miller. Theory of scheduling. Addison-Wesley Pub. Co Reading, Mass, 1967.

  • [9]

    P. Erdős. On a combinatorial problem. Nordisk Mat. Tidskr., 11:5–10, 40, 1963.

  • [10]

    P. Erdős. On a combinatorial problem. II. Acta Math. Acad. Sci. Hungar., 15:445447, 1964.

  • [11]

    P. Erdős and A. Hajnal. On a property of families of sets. Acta Math. Acad. Sci. Hungar., 12:87123, 1961.

  • [12]

    Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences.

    • Search Google Scholar
    • Export Citation
  • [13]

    Donald W. Gillies and Jane W.-S. Liu. Scheduling tasks with and/or precedence constraints. SIAM J. Comput., 24(4):797810, 1995.

  • [14]

    R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. In Interfaces between computer science and operations research (Proc. Sympos., Math. Centrum, Amsterdam, 1976), volume 99 of Math. Centre Tracts, pages 169214. Math. Centrum, Amsterdam, 1978.

    • Search Google Scholar
    • Export Citation
  • [15]

    Ronald L. Graham. Combinatorial scheduling theory. In Lynn Arthur Steen, editor, Mathematics Today Twelve Informal Essays, pages 183211. Springer New York, New York, NY, 1978.

    • Search Google Scholar
    • Export Citation
  • [16]

    Branko Grünbaum. Acyclic colorings of planar graphs. Israel J. Math., 14:390408, 1973.

  • [17]

    Eun-Seok Kim and Marc E. Posner. Parallel machine scheduling with s-precedence constraints. IIE Transactions, 42(7):525537, 2010.

  • [18]

    L. Lovász. Coverings and coloring of hypergraphs. In Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1973), pages 312, 1973.

    • Search Google Scholar
    • Export Citation
  • [19]

    John Machacek. Plurigraph coloring and scheduling problems. Electron. J. Combin., 24(2):Paper No. 2.29, 2017.

  • [20]

    Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symbolic Comput., 60:94112, 2014.

  • [21]

    Edwin W. Miller. On a property of families of sets. C. R. Soc. Sci. Varsovie, Cl. III, 30:3138, 1937.

  • [22]

    Patric R. J. Östergård. On the minimum size of 4-uniform hypergraphs without property 𝐵. Discrete Appl. Math., 163(part 2):199204, 2014.

    • Search Google Scholar
    • Export Citation
  • [23]

    Jaikumar Radhakrishnan and Aravind Srinivasan. Improved bounds and algorithms for hypergraph 2-coloring. Random Structures Algorithms, 16(1):432, 2000.

    • Search Google Scholar
    • Export Citation
  • [24]

    A. M. Raigorodskii and D. D. Cherkashin. Extremal problems in hypergraph colouring. Uspekhi Mat. Nauk, 75(1(451)):95154, 2020.

  • [25]

    A. M. Ra˘ıgorodski˘ı and D. A. Shabanov. The Erdős-Hajnal problem of hypergraph colorings, its generalizations, and related problems. Uspekhi Mat. Nauk, 66(5(401)):109182, 2011.

    • Search Google Scholar
    • Export Citation
  • [26]

    Mario Sanchez. Möbius inversion as duality for Hopf monoids. Sém. Lothar. Combin., 82B:Art. 91, 12, 2020.

  • [27]

    P. D. Seymour. A note on a combinatorial problem of Erdős and Hajnal. J. London Math. Soc. (2), 8:681682, 1974.

  • [28]

    É. Sopena. Homomorphisms and colourings of oriented graphs: an updated survey. Discrete Math., 339(7):19932005, 2016.

  • [29]

    Carsten Thomassen. The even cycle problem for directed graphs. J. Amer. Math. Soc., 5(2):217229, 1992.

  • [30]

    B. Toft. On colour-critical hypergraphs. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. III, pages 1445–1457. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975.

    • Search Google Scholar
    • Export Citation
  • [31]

    D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal, 10(1):8586, 1967.

    • Search Google Scholar
    • Export Citation
  • [32]

    Jacob A. White. Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart theory. In 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), Discrete Math. Theor. Comput. Sci. Proc., BC, pages 1215–1226. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, [2016] ©2016.

    • Search Google Scholar
    • Export Citation
  • [33]

    D. C. Wood. A technique for colouring a graph applicable to large scale timetabling problems. The Computer Journal, 12(4):317319, 1969.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)