Author:
Grigory Ivanov Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Matematica, Rua Marquês de São Vicente, 225, Edifício Cardeal Leme, sala 862, 22451-900 Gávea, Rio de Janeiro, Brazil

Search for other papers by Grigory Ivanov in
Current site
Google Scholar
PubMed
Close
Restricted access

We study the “no-dimensional” analogue of Helly’s theorem in Banach spaces. Specifically, we obtain the following no-dimensional Helly-type results for uniformly convex Banach spaces: Helly’s theorem, fractional Helly’s theorem, colorful Helly’s theorem, and colorful fractional Helly’s theorem.

The combinatorial part of the proofs for these Helly-type results is identical to the Euclidean case as presented in [2]. The primary difference lies in the use of a certain geometric inequality in place of the Pythagorean theorem. This inequality can be explicitly expressed in terms of the modulus of convexity of a Banach space.

  • [1]

    K. Adiprasito, I. Bárány, and N. H. Mustafa. Theorems of Carathéodory, Helly, and Tverberg without dimension. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 23502360. SIAM, Philadelphia, PA, 2019.

    • Search Google Scholar
    • Export Citation
  • [2]

    K. Adiprasito, I. Bárány, N. H. Mustafa, and T. Terpai. Theorems of Carathéodory, Helly, and Tverberg without dimension. Discrete Comput. Geom., 64(2):233258, 2020.

    • Search Google Scholar
    • Export Citation
  • [3]

    J. Alonso, H. Martini, and S. Wu. On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math., 83(1-2):153189, 2012.

    • Search Google Scholar
    • Export Citation
  • [4]

    I. Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2-3):141152, 1982.

  • [5]

    I. Bárány, F. Fodor, L. Montejano, D. Oliveros, and A. Pór. Colourful and fractional (𝑝, 𝑞)-theorems. Discrete Comput. Geom., 51(3):628642, 2014.

    • Search Google Scholar
    • Export Citation
  • [6]

    I. Bárány and G. Kalai. Helly-type problems. Bull. Amer. Math. Soc. (N.S.), 59(4):471502, 2022.

  • [7]

    J. Diestel. Geometry of Banach spaces—selected topics, volume 485 of Lecture Notes in Mathematics, Vol. Springer, Berlin-New York, 1975.

    • Search Google Scholar
    • Export Citation
  • [8]

    P. Enflo. Banach spaces which can be given an equivalent uniformly convex norm. Israel J. Math., 13:281288 (1973), 1972.

  • [9]

    Ed. Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175176, 1923.

    • Search Google Scholar
    • Export Citation
  • [10]

    G. Ivanov. Approximate Carathéodory’s theorem in uniformly smooth Banach spaces. Discrete Comput. Geom., 66(1):273280, 2021.

  • [11]

    G. Ivanov. No-dimension Tverberg’s theorem and its corollaries in Banach spaces of type 𝑝. Bull. Lond. Math. Soc., 53(2):631641, 2021.

    • Search Google Scholar
    • Export Citation
  • [12]

    G. Ivanov and H. Martini. New moduli for Banach spaces. Ann. Funct. Anal., 8(3):350365, 2017.

  • [13]

    G. M. Ivanov. Modulus of supporting convexity and supporting smoothness. Eurasian Math. J., 6(1):2640, 2015.

  • [14]

    M. Katchalski and A. Liu. A problem of geometry in 𝐑𝑛. Proc. Amer. Math. Soc., 75(2):284288, 1979.

  • [15]

    R. Larsen. Functional analysis: an introduction, volume 15 of Pure Appl. Math. Marcel Dekker, Inc., New York, 1973.

  • [16]

    J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. II, volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin-New York, 1979. Function spaces.

    • Search Google Scholar
    • Export Citation
  • [17]

    V. I. Liokumovič. Existence of 𝐵-spaces with a nonconvex modulus of convexity. Izv. Vysš. Učebn. Zaved. Matematika, (12(139)):4349, 1973.

    • Search Google Scholar
    • Export Citation
  • [18]

    G. Pisier. Martingales with values in uniformly convex spaces. Israel J. Math., 20(3-4):326350, 1975.

  • [19]

    G. Pisier. Remarques sur un résultat non publié de B. Maurey. In Seminar on Functional Analysis, 1980–1981, pages Exp. No. V, 13. École Polytech., Palaiseau, 1981.

    • Search Google Scholar
    • Export Citation
  • [20]

    R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge, expanded edition, 2014.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)