We study the “no-dimensional” analogue of Helly’s theorem in Banach spaces. Specifically, we obtain the following no-dimensional Helly-type results for uniformly convex Banach spaces: Helly’s theorem, fractional Helly’s theorem, colorful Helly’s theorem, and colorful fractional Helly’s theorem.
The combinatorial part of the proofs for these Helly-type results is identical to the Euclidean case as presented in [2]. The primary difference lies in the use of a certain geometric inequality in place of the Pythagorean theorem. This inequality can be explicitly expressed in terms of the modulus of convexity of a Banach space.
K. Adiprasito, I. Bárány, and N. H. Mustafa. Theorems of Carathéodory, Helly, and Tverberg without dimension. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2350–2360. SIAM, Philadelphia, PA, 2019.
K. Adiprasito, I. Bárány, N. H. Mustafa, and T. Terpai. Theorems of Carathéodory, Helly, and Tverberg without dimension. Discrete Comput. Geom., 64(2):233–258, 2020.
J. Alonso, H. Martini, and S. Wu. On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math., 83(1-2):153–189, 2012.
I. Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2-3):141–152, 1982.
I. Bárány, F. Fodor, L. Montejano, D. Oliveros, and A. Pór. Colourful and fractional (𝑝, 𝑞)-theorems. Discrete Comput. Geom., 51(3):628–642, 2014.
I. Bárány and G. Kalai. Helly-type problems. Bull. Amer. Math. Soc. (N.S.), 59(4):471–502, 2022.
J. Diestel. Geometry of Banach spaces—selected topics, volume 485 of Lecture Notes in Mathematics, Vol. Springer, Berlin-New York, 1975.
P. Enflo. Banach spaces which can be given an equivalent uniformly convex norm. Israel J. Math., 13:281–288 (1973), 1972.
Ed. Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.
G. Ivanov. Approximate Carathéodory’s theorem in uniformly smooth Banach spaces. Discrete Comput. Geom., 66(1):273–280, 2021.
G. Ivanov. No-dimension Tverberg’s theorem and its corollaries in Banach spaces of type 𝑝. Bull. Lond. Math. Soc., 53(2):631–641, 2021.
G. Ivanov and H. Martini. New moduli for Banach spaces. Ann. Funct. Anal., 8(3):350–365, 2017.
G. M. Ivanov. Modulus of supporting convexity and supporting smoothness. Eurasian Math. J., 6(1):26–40, 2015.
M. Katchalski and A. Liu. A problem of geometry in 𝐑𝑛. Proc. Amer. Math. Soc., 75(2):284–288, 1979.
R. Larsen. Functional analysis: an introduction, volume 15 of Pure Appl. Math. Marcel Dekker, Inc., New York, 1973.
J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. II, volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin-New York, 1979. Function spaces.
V. I. Liokumovič. Existence of 𝐵-spaces with a nonconvex modulus of convexity. Izv. Vysš. Učebn. Zaved. Matematika, (12(139)):43–49, 1973.
G. Pisier. Martingales with values in uniformly convex spaces. Israel J. Math., 20(3-4):326–350, 1975.
G. Pisier. Remarques sur un résultat non publié de B. Maurey. In Seminar on Functional Analysis, 1980–1981, pages Exp. No. V, 13. École Polytech., Palaiseau, 1981.
R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge, expanded edition, 2014.