In this paper, we consider the asymptotic behaviour of the expectation of the number of vertices of a uniform random spherical disc-polygon. This provides a connection between the corresponding results in spherical convexity, and in Euclidean spindle-convexity, where the expectation tends to the same constant. We also extend the result to a more general case, where the random points generating the uniform random disc-polygon are chosen from spherical convex disc with smooth boundary.
E. Artin. The gamma function. Holt, Rinehart and Winston, 1964.
I. Bárány. Random points and lattice points in convex bodies. Bulletin of the American Mathematical Society, 45(3):339–365, 2007.
I. Bárány, D. Hug, M. Reitzner, and R. Schneider. Random points in halfspheres. Random Struct. Alg., 50:3–22, 2017.
F. Besau, A. Gusakova, M. Reitzner, C. Schütt, C. Thäle, and E. Werner. Spherical convex hull of random points on a wedge. Math. Ann., 389(3):2289–2316, 2023.
K. Bezdek, Z. Lángi, M. Naszódi, and P. Papez. Ball-polyhedra, Discrete Comput. Geom., 38(2):201–230, 2007.
K. J. Böröczky, F. Fodor, M. Reitzner, and V. Vígh. Mean width of inscribed random polytopes in a reasonably smooth convex body. J. Multivariate Anal., 100:2287–2295, 2009.
B. Csikós. On the Volume of Flowers in Space Forms, Geometriae Dedicata, 86:59–79, 2001.
F. Fodor. Random ball-polytopes in smooth convex bodies. arXiv: 1906.11480v1, 2020.
F. Fodor, P. Kevei, and V. Vígh. On random disc polygons in smooth convex discs, Adv. in Appl. Probab., 46(4):899–918, 2014.
F. Fodor, P. Kevei, and V. Vígh. On random disc polygons in a disc-polygon. Electron. Commun. Probab., 28:1–11, 2023.
H. Martini, L. Montejano, and D. Oliveros. Bodies of Constant Width. Birkhäuser, 2019.
R. Schneider, and W. Weil. Stochastic and Integral Geometry. Probability and Its Applications. Springer, 2008.
A. Rényi and R. Sulanke. Über die konvexe Hülle von 𝑛 zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:75–84, 1963.