View More View Less
  • 1 College of Agriculture, Razi University Kermanshah, Iran
  • 2 Agricultural Research Institute of the Hungarian Academy of Sciences Martonvásár, Hungary
Restricted access

The genotype by environment (GE) interaction is a major problem in the study of quantitative traits because it complicates the interpretation of genetic experiments and makes predictions difficult. In order to quantify GE interaction effects on the grain yield of durum wheat and to determine stable genotypes, field experiments were conducted with ten genotypes for four consecutive years in two different conditions (irrigated and rainfed) in a completely randomized block design with three replications in each environment. Combined analysis of variance exhibited significant differences for the GE interaction, indicating the possibility of stable entries. The results of additive main effect and multiplicative interaction (AMMI) analysis revealed that 12% of total variability was justified by the GE interaction, which was six times more than that of genotype. Ordination techniques displayed high differences for the interaction principal components (IPC1, IPC2 and IPC3), indicating that 92.5% of the GE sum of squares was justified by AMMI1, AMMI2 and AMMI3, i.e. 4.5 times more than that explained by the linear regression model. The results of the AMMI model and biplot analysis showed two stable genotypes with high grain yield, due to general adaptability to both rainfed and irrigated conditions, and one with specific adaptation.