Authors:
D. Polgári Szent István University Institute of Genetics and Biotechnology Gödöllő Hungary

Search for other papers by D. Polgári in
Current site
Google Scholar
PubMed
Close
,
B. Kalapos Szent István University Institute of Genetics and Biotechnology Gödöllő Hungary

Search for other papers by B. Kalapos in
Current site
Google Scholar
PubMed
Close
,
V. Tisza

Search for other papers by V. Tisza in
Current site
Google Scholar
PubMed
Close
,
L. Kovács Szent István University Institute of Genetics and Biotechnology Gödöllő Hungary

Search for other papers by L. Kovács in
Current site
Google Scholar
PubMed
Close
,
B. Kerti Szent István University Institute of Genetics and Biotechnology Gödöllő Hungary

Search for other papers by B. Kerti in
Current site
Google Scholar
PubMed
Close
,
L. Heszky Szent István University Institute of Genetics and Biotechnology Gödöllő Hungary

Search for other papers by L. Heszky in
Current site
Google Scholar
PubMed
Close
, and
E. Kiss Szent István University Institute of Genetics and Biotechnology Gödöllő Hungary

Search for other papers by E. Kiss in
Current site
Google Scholar
PubMed
Close
Restricted access

The aim of this study was to characterize a gene associated with ripening in strawberry, a non-climacteric fruit. Differently expressed transcripts of candidate genes functioning in fruit development and ripening were identified from strawberry ( Fragaria × ananassa Duch.) in four ripening stages using the cDNA-AFLP method. The cDNA fragment designated C11M32M003 was selected from the putative ripening-related genes for further analysis. This transcript accumulated in the green receptacle, and the achene, but gene expression decreased in both tissues in parallel with the progress of ripening (Balogh, 2006). In silico analysis revealed that both the cDNA-AFLP fragment (C11M32M003) and the full-length cDNA AY695666 showed over 60% homology at the nucleotide level with two gene groups found in various plant species, including Arabidopsis thaliana . One of the candidate groups consisted of NITRILASE sequences thought to be related to auxin biosynthesis. As an alternative, a lesser known gene group named SPIRAL was suggested. The results of the detailed bioinformatic comparisons presented in this paper prove that the strawberry sequence analysed belongs to the SPIRAL gene family.

  • Balogh, A. (2006): A termesztett szamóca gyümölcsfejlődésben és érésben szerepet játszó gének izolálása . (Isolation of genes involved in friut development and ripening in cultivated strawberries.) PhD thesis, Szent István Egyetem, Gödöllő.

    Balogh A. , '', in A termesztett szamóca gyümölcsfejlődésben és érésben szerepet játszó gének izolálása , (2006 ) -.

  • Balogh, A., Koncz, T., Tisza, V., Kiss, E., Heszky, L. (2005a): Identification of ripening-related genes in strawberry fruit by cDNA-AFLP. Int. J. Horit. Sci. , 11 , 33–41.

    Heszky L. , 'Identification of ripening-related genes in strawberry fruit by cDNA-AFLP ' (2005 ) 11 Int. J. Horit. Sci. : 33 -41 .

    • Search Google Scholar
  • Balogh, A., Koncz, T., Tisza, V., Kiss, E., Heszky, L. (2005b): Identification of genes and their promoters involved in strawberry fruit development and ripening. Kertgazdaság , Special Edition, 105–110.

  • Baskin, T. I., Wilson, J. E., Cork, A., Williamson, R. E. (1994): Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol. , 35 , 935–942.

    Williamson R. E. , 'Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol ' (1994 ) 35 Plant Cell Physiol. : 935 -942 .

    • Search Google Scholar
  • Bokros, C. L., Hugdahl, J. D., Hanesworth, V. R., Murthy, J. V., Morejohn, L. C. (1993): Characterization of the reversible taxol-induced polymerization of plant tubulin into microtubules. Biochemistry , 32 , 3437–3447.

    Morejohn L. C. , 'Characterization of the reversible taxol-induced polymerization of plant tubulin into microtubules ' (1993 ) 32 Biochemistry : 3437 -3447 .

    • Search Google Scholar
  • Breyne, P., Dreesen, R., Cannoot, B., Rombaut, D., Vandepoele, K., Rombauts, S., Vanderhaeghen, R., Inzé, D., Zabeau, M. (2003): Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol. Gen. Genomics , 269 , 173–179.

    Zabeau M. , 'Quantitative cDNA-AFLP analysis for genome-wide expression studies ' (2003 ) 269 Mol. Gen. Genomics : 173 -179 .

    • Search Google Scholar
  • Furutani, I., Watanabe, Y., Prieto, R., Masukawa, M., Suzuki, K., Naoi, K., Thitamadee, S., Shikanai, T., Hashimoto, T. (2000): The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana . Development , 127 , 4443–4453.

    Hashimoto T. , 'The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana ' (2000 ) 127 Development : 4443 -4453 .

    • Search Google Scholar
  • Giovannoni, J. J. (2004): Genetic regulation of fruit development and ripening. The Plant Cell , 16 , 170–180.

    Giovannoni J. J. , 'Genetic regulation of fruit development and ripening ' (2004 ) 16 The Plant Cell : 170 -180 .

    • Search Google Scholar
  • Hillebrand, H., Bartling, D., Weiler, E. W. (1998): Structural analysis of the NIT2/NIT1/NIT3 gene cluster encoding nitrilases, enzymes catalysing the terminal activation step in indole-acetic biosynthesis in Arabidopsis thaliana . Plant Mol. Biol. , 36 , 89–99.

    Weiler E. W. , 'Structural analysis of the NIT2/NIT1/NIT3 gene cluster encoding nitrilases, enzymes catalysing the terminal activation step in indole-acetic biosynthesis in Arabidopsis thaliana ' (1998 ) 36 Plant Mol. Biol. : 89 -99 .

    • Search Google Scholar
  • Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H., Hashimoto, T. (2004): SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. The Plant Cell , 16 , 1178–1190.

    Hashimoto T. , 'SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells ' (2004 ) 16 The Plant Cell : 1178 -1190 .

    • Search Google Scholar
  • Sambrook, J., Russell, D. W. (2005): Rapid amplification of 5′ cDNA ends. Nature Methods , 2 , 629–630.

    Russell D. W. , 'Rapid amplification of 5′ cDNA ends ' (2005 ) 2 Nature Methods : 629 -630 .

    • Search Google Scholar
  • Weerderburg, C., Seagull, R. W. (1988): The effects of taxol and colchicine on microtubule and microfibril arrays in elongating plant cells in culture. Can. J. Bot. , 66 , 1707–1716.

    Seagull R. W. , 'The effects of taxol and colchicine on microtubule and microfibril arrays in elongating plant cells in culture ' (1988 ) 66 Can. J. Bot. : 1707 -1716 .

    • Search Google Scholar
  • Yao, M., Wakamatsu, Y., Itoh, T. J., Shoji, T., Hashimoto, T. (2008): Arabidopsis SPIRAL 2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J. Cell Sci. , 121 , 2372–2381.

    Hashimoto T. , 'Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics ' (2008 ) 121 J. Cell Sci. : 2372 -2381 .

    • Search Google Scholar
  • Collapse
  • Expand

Acta Agronomica Hungarica
Language English
Russian
German
French
Size  
Year of
Foundation
1950
Publication
Programme
ceased
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia   
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-0161 (Print)
ISSN 1588-2527 (Online)