Authors:
M. MegyeriAgricultural Research Institute of The Hungarian Academy of Sciences Martonvásár Hungary

Search for other papers by M. Megyeri in
Current site
Google Scholar
PubMed
Close
,
P. MikóAgricultural Research Institute of The Hungarian Academy of Sciences Martonvásár Hungary

Search for other papers by P. Mikó in
Current site
Google Scholar
PubMed
Close
,
I. MolnárAgricultural Research Institute of The Hungarian Academy of Sciences Martonvásár Hungary

Search for other papers by I. Molnár in
Current site
Google Scholar
PubMed
Close
, and
G. KovácsAgricultural Research Institute of The Hungarian Academy of Sciences Martonvásár Hungary

Search for other papers by G. Kovács in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Cultivated einkorn (Triticum monococcum L. ssp. monococcum) is an excellent source of resistance against several wheat diseases and quality parameters. Semi-dwarf einkorn lines with good crossability were identified in order to produce Triticum turgidum × T. monococcum synthetic amphiploids. Two combinations were used to develop the amphiploids: durum × einkorn and emmer × einkorn.After the genome duplication of F1 seeds, highly fertile amphiploids were developed. The AuBAm genome structure of the progenies was confirmed by genomic in situ hybridization (GISH).Lines derived from durum × einkorn and emmer × einkorn crosses were studied for agronomic performance, disease resistance and genetic variability. Both amphiploid combinations showed excellent resistance against certain wheat diseases (leaf rust, powdery mildew), but not against fusarium. The durum-based synthetic amphiploid lines showed a higher level of phenotypic diversity. The newly produced T. turgidum × T. monococcum synthetic hexaploids are promising genetic resources for wheat breeding. Selected durum × einkorn lines are currently used in bread wheat improvement to transfer the useful properties of einkorn into cultivated hexaploid wheat via ‘bridge-crossing’.

  • Barnabás, B., Pfahler, P. L., Kovács, G. (1991): Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.). Theor. Appl. Genet., 81, 675–678.

    Kovács G. , 'Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.) ' (1991 ) 81 Theor. Appl. Genet. : 675 -678 .

    • Search Google Scholar
  • Bhagyalakshmi, K., Vinod, K. K., Kumar, M., Arumugachamy, S., Prabhakaran, A. J., Raveendran, T. S. (2008): Interspecific hybrids from wild × cultivated Triticum crosses — A study on the cytological behaviour and molecular relations. J. Crop Sci. Biotech., 11, 257–262.

    Raveendran T. S. , 'Interspecific hybrids from wild × cultivated Triticum crosses — A study on the cytological behaviour and molecular relations ' (2008 ) 11 J. Crop Sci. Biotech. : 257 -262 .

    • Search Google Scholar
  • Brandolini, A., Hidalgo, A., Moscaritolo, S. (2008): Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J. Cer. Sci., 47, 599–609.

    Moscaritolo S. , 'Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour ' (2008 ) 47 J. Cer. Sci. : 599 -609 .

    • Search Google Scholar
  • Gill, R. S., Dhaliwal, H. S., Multani, D. S. (1988): Synthesis and evaluation of Triticum durum — T. monococcum amphiploids. Theor. Appl. Genet., 75, 912–916.

    Multani D. S. , 'Synthesis and evaluation of Triticum durum — T. monococcum amphiploids ' (1988 ) 75 Theor. Appl. Genet. : 912 -916 .

    • Search Google Scholar
  • Goncharov, N. P., Bannikova, S. V., Kawahara, T. (2007): Wheat artificial amphiploids involving the Triticum timopheevii genome: their studies, preservation and reproduction. Genet. Resour. Crop Evol., 54, 1507–1516.

    Kawahara T. , 'Wheat artificial amphiploids involving the Triticum timopheevii genome: their studies, preservation and reproduction ' (2007 ) 54 Genet. Resour. Crop Evol. : 1507 -1516 .

    • Search Google Scholar
  • Kuraparthy, V., Harjit, S., Parveen, C., Singh, S., Dhaliwal, H. S. (2000): Molecular tagging of Karnal bunt resistance genes of Triticum monococcum L. transferred to Triticum aestivum L. Crop Improvement, 27, 33–42.

    Dhaliwal H. S. , 'Molecular tagging of Karnal bunt resistance genes of Triticum monococcum L. transferred to Triticum aestivum L ' (2000 ) 27 Crop Improvement : 33 -42 .

    • Search Google Scholar
  • Lage, J., Skovmand, B., Peña, R. J., Andersen, S. B. (2006): Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet. Resour. Crop Evol., 53, 955–962.

    Andersen S. B. , 'Grain quality of emmer wheat derived synthetic hexaploid wheats ' (2006 ) 53 Genet. Resour. Crop Evol. : 955 -962 .

    • Search Google Scholar
  • Ma, H., Singh, R. P., Mujeeb-Kazi, A. (1997): Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica, 94, 279–286.

    Mujeeb-Kazi A. , 'Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids ' (1997 ) 94 Euphytica : 279 -286 .

    • Search Google Scholar
  • Molnár, I., Benavente, E., Molnár-Láng, M. (2009): Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivumAegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome, 52, 156–165.

    Molnár-Láng M. , 'Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum — Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization ' (2009 ) 52 Genome : 156 -165 .

    • Search Google Scholar
  • Monneveux, P., Zaharieva, M., Rekika, D. (2000): The utilization of Triticum and Aegilops species for the improvement of durum wheat. pp. 71–81. In: Royo, C., Nachit, M. M., Di Fonzo, N., Araus, J. L. (eds.), Durum Wheat Improvement in the Mediterranean Region: New Challenges: L’amélioration du blé dur dans la région méditerranéenne: Nouveaux défis, CIHEAM-IAMZ, Zaragoza (Spain).

    Rekika D. , '', in Durum Wheat Improvement in the Mediterranean Region: New Challenges: L’amélioration du blé dur dans la région méditerranéenne: Nouveaux défis , (2000 ) -.

  • Mujeeb-Kazi, A., Hettel, G. P. (eds.) (1995): Utilizing Wild Grass Biodiversity in Wheat Improvement: 15 Years of Wide Cross Research at CIMMYT. CIMMYT Research Report No. 2, CIMMYT, Mexico City, 140 pp.

  • Mujeeb-Kazi, A., Rosas, V., Roldan, S. (1996): Conservation of the genetic variation of Triticum tauschii (Coss.) Schmal. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet. Resour. Crop Evol., 43, 129–134.

    Roldan S. , 'Conservation of the genetic variation of Triticum tauschii (Coss.) Schmal. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement ' (1996 ) 43 Genet. Resour. Crop Evol. : 129 -134 .

    • Search Google Scholar
  • Multani, D. S., Dhaliwal, H. S., Singh, P., Gill, K. S. (1988): Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica). Plant Breed., 101, 122–125.

    Gill K. S. , 'Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica) ' (1988 ) 101 Plant Breed. : 122 -125 .

    • Search Google Scholar
  • Plamenov, D., Belchev, I., Kiryakova, V., Spetsov, P. (2009): Fungal resistance of Triticum durum — T. monococcum ssp. aegilopoides amphiploid. J. Plant Dis. Protect., 116, 60–62.

    Spetsov P. , 'Fungal resistance of Triticum durum — T. monococcum ssp. aegilopoides amphiploid ' (2009 ) 116 J. Plant Dis. Protect. : 60 -62 .

    • Search Google Scholar
  • The, T. T., Baker, E. P. (1975): Basic studies relating to transference of genetic characters from Triticum monococcum L. to hexaploid wheat. Aust. J. Biol. Sci., 28, 189–199.

    Baker E. P. , 'Basic studies relating to transference of genetic characters from Triticum monococcum L. to hexaploid wheat ' (1975 ) 28 Aust. J. Biol. Sci. : 189 -199 .

    • Search Google Scholar
  • Collapse
  • Expand

Acta Agronomica Hungarica
Language English
Russian
German
French
Size  
Year of
Foundation
1950
Publication
Programme
ceased
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia   
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-0161 (Print)
ISSN 1588-2527 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2022 11 0 0
Nov 2022 1 0 0
Dec 2022 13 0 0
Jan 2023 29 0 0
Feb 2023 1 0 0
Mar 2023 2 0 0
Apr 2023 0 0 0