Authors:
M. MegyeriHungarian Academy of Sciences Agricultural Institute, Centre for Agricultural Research Martonvásár Hungary

Search for other papers by M. Megyeri in
Current site
Google Scholar
PubMed
Close
,
A. FarkasHungarian Academy of Sciences Agricultural Institute, Centre for Agricultural Research Martonvásár Hungary

Search for other papers by A. Farkas in
Current site
Google Scholar
PubMed
Close
,
M. VargaHungarian Academy of Sciences Agricultural Institute, Centre for Agricultural Research Martonvásár Hungary

Search for other papers by M. Varga in
Current site
Google Scholar
PubMed
Close
,
G. KovácsHungarian Academy of Sciences Agricultural Institute, Centre for Agricultural Research Martonvásár Hungary

Search for other papers by G. Kovács in
Current site
Google Scholar
PubMed
Close
,
M. Molnár-LángHungarian Academy of Sciences Agricultural Institute, Centre for Agricultural Research Martonvásár Hungary

Search for other papers by M. Molnár-Láng in
Current site
Google Scholar
PubMed
Close
, and
I. MolnárHungarian Academy of Sciences Agricultural Institute, Centre for Agricultural Research Martonvásár Hungary

Search for other papers by I. Molnár in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Triticum monococcum represents an important source of useful genes and alleles that it would be desirable to use in wheat breeding programmes. The well-defined landmarks on the Am chromosomes could accelerate the targeted introgression of T. monococcum chromatin into the wheat genome.Fluorescence in situ hybridization (FISH) using the repetitive DNA probes pSc119.2, Afa family and pTa71 showed that the pSc119.2 probe was not suitable for the identification of Am chromosomes. In contrast, the whole set of Am chromosomes (especially chromosomes 1, 4, 5 and 7) could be discriminated based on the hybridization pattern of pTa71 and Afa family. In situ hybridization with microsatellite motifs (GAA, CAG, AAC and AGG) proved that SSRs represent additional landmarks for the identification of Am chromosomes. The most promising SSR probes were the GAA and CAG motifs, which clearly discriminated the 6Am chromosome and, when used in combination with the Afa family and pTa71 probes, allowed the whole set of Am chromosomes to be reliably identified.In conclusion, fluorescence in situ hybridization using the repetitive DNA probes Afa family and pTa71, combined with SSR probes, makes it possible to identify the Am chromosomes of T. monococcum and to discriminate them from Au chromosomes in the polyploid wheat background.

  • Badaeva, E. D., Dedkova, O. S., Gay, G., Pukhalskyi, V. A., Zelenin, A. V., Bernard, S., Bernard, M. (2007): Chromosomal rearrangements in wheat: their types and distribution. Genome, 50, 907–926.

    Bernard M. , 'Chromosomal rearrangements in wheat: their types and distribution ' (2007 ) 50 Genome : 907 -926 .

    • Search Google Scholar
  • Baum, B. R., Bailey, L. G. (2004): The origin of the A genome donor of wheats (Triticum: Poaceae) — a perspective based on the sequence variation of the 5S DNA gene units. Genet. Resour. Crop Ev., 51, 183–196.

    Bailey L. G. , 'The origin of the A genome donor of wheats (Triticum: Poaceae) — a perspective based on the sequence variation of the 5S DNA gene units ' (2004 ) 51 Genet. Resour. Crop Ev. : 183 -196 .

    • Search Google Scholar
  • Brandolini, A., Hidalgo, A., Moscaritolo, S. (2008): Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J. Cer. Sci., 47, 599–609.

    Moscaritolo S. , 'Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour ' (2008 ) 47 J. Cer. Sci. : 599 -609 .

    • Search Google Scholar
  • Contento, A., Heslop-Harrison, J. S., Schwarzacher, T. (2005): Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet. Genome Res., 109, 34–42.

    Schwarzacher T. , 'Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae ' (2005 ) 109 Cytogenet. Genome Res. : 34 -42 .

    • Search Google Scholar
  • Cuadrado, A., Cardoso, M., Jouve, N. (2008): Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet. Genome Res., 120, 210–219.

    Jouve N. , 'Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications ' (2008 ) 120 Cytogenet. Genome Res. : 210 -219 .

    • Search Google Scholar
  • Cuadrado, A., Schwarzacher, T., Jouve, N. (2000): Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor. Appl. Genet., 101, 711–717.

    Jouve N. , 'Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides ' (2000 ) 101 Theor. Appl. Genet. : 711 -717 .

    • Search Google Scholar
  • Devos, K. M., Dubcovsky, J., Dvorak, J., Chinoy, C. N., Gale, M. D. (1995): Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet., 91, 282–288.

    Gale M. D. , 'Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination ' (1995 ) 91 Theor. Appl. Genet. : 282 -288 .

    • Search Google Scholar
  • Dvorak, J., Diterlizzi, P., Zhang, H. B., Resta, P. (1993): The evolution of polyploid wheats — identification of the A-genome donor species. Genome, 36, 21–31.

    Resta P. , 'The evolution of polyploid wheats — identification of the A-genome donor species ' (1993 ) 36 Genome : 21 -31 .

    • Search Google Scholar
  • Fedak, G., Kim, N. S. (2008): Tools and methodologies for cytogenetic studies of plant chromosomes. Cytology and Genetics, 42, 189–203.

    Kim N. S. , 'Tools and methodologies for cytogenetic studies of plant chromosomes ' (2008 ) 42 Cytology and Genetics : 189 -203 .

    • Search Google Scholar
  • Friebe, B., Kim, N. S., Kuspira, J., Gill, B. S. (1990): Genetic and cytogenetic analyses of the A genome of Triticum monococcum. VI. Production and identification of primary trisomics using the C-banding technique. Genome, 33, 542–555.

    Gill B. S. , 'Genetic and cytogenetic analyses of the A genome of Triticum monococcum. VI. Production and identification of primary trisomics using the C-banding technique ' (1990 ) 33 Genome : 542 -555 .

    • Search Google Scholar
  • Gerlach, W. L. (1977): N-banded karyotypes of wheat species. Chromosoma, 62, 49–56.

    Gerlach W. L. , 'N-banded karyotypes of wheat species ' (1977 ) 62 Chromosoma : 49 -56 .

    • Search Google Scholar
  • Gerlach, W. L., Bedbrook, J. R. (1979): Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res., 7, 1869–1885.

    Bedbrook J. R. , 'Cloning and characterization of ribosomal RNA genes from wheat and barley ' (1979 ) 7 Nucleic Acids Res. : 1869 -1885 .

    • Search Google Scholar
  • Han, F., Fedak, G., Guo, W., Liu, B. (2005): Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics, 170, 1239–1245.

    Liu B. , 'Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids ' (2005 ) 170 Genetics : 1239 -1245 .

    • Search Google Scholar
  • Hernandez, P., Martis, M., Dorado, G., Pfeifer, M., Gálvez, S., Schaaf, S., Jouve, N., Šimková, H., Valárik, M., Doležel, J., Mayer, K. F. X. (2012): Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant Journal, 69, 377–386.

    Mayer K. F. X. , 'Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content ' (2012 ) 69 Plant Journal : 377 -386 .

    • Search Google Scholar
  • Hidalgo, A., Brandolini, B., Pompeia, C., Piscozzi, R. (2006): Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J. Cer. Sci., 44, 182–193.

    Piscozzi R. , 'Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.) ' (2006 ) 44 J. Cer. Sci. : 182 -193 .

    • Search Google Scholar
  • Jiang, J., Friebe, B., Gill, B. S. (1994): Chromosome painting of Amigo wheat. Theor. Appl. Genet., 89, 811–813.

    Gill B. S. , 'Chromosome painting of Amigo wheat ' (1994 ) 89 Theor. Appl. Genet. : 811 -813 .

    • Search Google Scholar
  • Kubaláková, M., Kovářová, P., Suchánková, P., Číhalíková, J., Bartoš J., Lucretti, S., Watanabe, N., Kianian, S. F., Doležel, J. (2005): Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics, 170, 823–829.

    Doležel J. , 'Chromosome sorting in tetraploid wheat and its potential for genome analysis ' (2005 ) 170 Genetics : 823 -829 .

    • Search Google Scholar
  • Megyeri, M., Mikó, P., Molnár, I., Kovács, G. (2011): Development of synthetic amphiploids based on Triticum turgidum × T. monococcum crosses to improve the adaptability of cereals. Acta Agron. Hung., 59, 267–274.

    Kovács G. , 'Development of synthetic amphiploids based on Triticum turgidum × T. monococcum crosses to improve the adaptability of cereals ' (2011 ) 59 Acta Agron. Hung. : 267 -274 .

    • Search Google Scholar
  • Molnár, I., Benavente, E., Molnár-Láng M. (2009): Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum — Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome, 52, 156–165.

    Molnár-Láng M. , 'Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum — Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization ' (2009 ) 52 Genome : 156 -165 .

    • Search Google Scholar
  • Molnár, I., Cifuentes, M., Schneider, A., Benavente, E., Molnár-Láng, M. (2011): Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot., 107, 65–76.

    Molnár-Láng M. , 'Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats ' (2011 ) 107 Ann. Bot. : 65 -76 .

    • Search Google Scholar
  • Molnár, I., Linc, G., Dulai, S., Nagy, E. D., Molnár-Láng M. (2007): Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheatbarley 4H(4D) disomic substitution line. Plant Breeding, 126, 369–374.

    Molnár-Láng M. , 'Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheatbarley 4H(4D) disomic substitution line ' (2007 ) 126 Plant Breeding : 369 -374 .

    • Search Google Scholar
  • Molnár, I., Schneider, A., Molnar-Láng, M. (2005): Demonstration of Aegilops biuncialis chromosomes in a wheat background by genomic in situ hybridization (GISH) and identification of U chromosomes by FISH using GAA sequences. Cereal Res. Commun., 33, 673–680.

    Molnar-Láng M. , 'Demonstration of Aegilops biuncialis chromosomes in a wheat background by genomic in situ hybridization (GISH) and identification of U chromosomes by FISH using GAA sequences ' (2005 ) 33 Cereal Res. Commun. : 673 -680 .

    • Search Google Scholar
  • Monneveux, P., Zaharieva, M., Rekika, D. (2000): The utilization of Triticum and Aegilops species for the improvement of durum wheat. In: Royo, C., Nachit, M. M., Di Fonzo N., Araus, J. L. (eds.), Durum Wheat Improvement in the Mediterranean Region: New Challenges: L’amélioration du blé dur dans la région méditerranéenne: Nouveaux défis. CIHEAMIAMZ, Zaragoza (Spain), pp. 71–81.

    Rekika D. , '', in Durum Wheat Improvement in the Mediterranean Region: New Challenges: L’amélioration du blé dur dans la région méditerranéenne: Nouveaux défis , (2000 ) -.

  • Mukai, Y., Nakahara, Y., Yamamoto, M. (1993): Simultaneous discrimination of the 3 genomes in hexaploid wheat by multicolour fluorescence in situ hybridisation using total genomic and highly repeated DNA probes. Genome, 36, 489–494.

    Yamamoto M. , 'Simultaneous discrimination of the 3 genomes in hexaploid wheat by multicolour fluorescence in situ hybridisation using total genomic and highly repeated DNA probes ' (1993 ) 36 Genome : 489 -494 .

    • Search Google Scholar
  • Nagaki, K., Tsujimoto, H., Isono, K., Sasakuma, T. (1995): Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome, 38, 479–486.

    Sasakuma T. , 'Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae ' (1995 ) 38 Genome : 479 -486 .

    • Search Google Scholar
  • Ozkan, H., Levy, A. A., Feldman, M. (2001): Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 13, 1735–1747.

    Feldman M. , 'Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group ' (2001 ) 13 Plant Cell : 1735 -1747 .

    • Search Google Scholar
  • Pedersen, C., Langridge, P. (1997): Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 40, 589–593.

    Langridge P. , 'Identification of the entire chromosome complement of bread wheat by two-colour FISH ' (1997 ) 40 Genome : 589 -593 .

    • Search Google Scholar
  • Sepsi, A., Molnár, I., Szalay, D., Molnár-Láng, M. (2008): Characterization of a leaf rust resistant wheat-Thinopyrum ponticum partial amphiploid BE-1 using sequential multicolor GISH and FISH. Theor. Appl. Genet., 116, 825–834.

    Molnár-Láng M. , 'Characterization of a leaf rust resistant wheat-Thinopyrum ponticum partial amphiploid BE-1 using sequential multicolor GISH and FISH ' (2008 ) 116 Theor. Appl. Genet. : 825 -834 .

    • Search Google Scholar
  • Szakács, É., Molnár-Láng, M. (2007): Development and molecular cytogenetic identification of new winter wheat/winter barley (Martonvásári 9 kr1/Igri) disomic addition lines. Genome, 50, 43–50.

    Molnár-Láng M. , 'Development and molecular cytogenetic identification of new winter wheat/winter barley (Martonvásári 9 kr1/Igri) disomic addition lines ' (2007 ) 50 Genome : 43 -50 .

    • Search Google Scholar
  • Tautz, D., Renz, M. (1984): Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acid. Res., 12, 4127–4138.

    Renz M. , 'Simple sequences are ubiquitous repetitive components of eukaryotic genomes ' (1984 ) 12 Nucleic Acid. Res. : 4127 -4138 .

    • Search Google Scholar
  • Valkoun, J. J. (2001): Wheat pre-breeding using wild progenitors. Euphytica, 119, 17–23.

    Valkoun J. J. , 'Wheat pre-breeding using wild progenitors ' (2001 ) 119 Euphytica : 17 -23 .

    • Search Google Scholar
  • Vrána, J., Kubaláková, M., Simková, H., Číhalíková, J., Lysák, M. A., Doležel, J. (2000): Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics, 156, 2033–2041.

    Doležel J. , 'Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) ' (2000 ) 156 Genetics : 2033 -2041 .

    • Search Google Scholar
  • Collapse
  • Expand

Acta Agronomica Hungarica
Language English
Russian
German
French
Size  
Year of
Foundation
1950
Publication
Programme
ceased
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia   
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-0161 (Print)
ISSN 1588-2527 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2022 7 0 0
Nov 2022 13 0 0
Dec 2022 17 0 0
Jan 2023 43 0 0
Feb 2023 8 0 0
Mar 2023 22 0 0
Apr 2023 0 0 0