Authors:
G. Juhász Department of Nuclear Chemistry, Eötvös Loránd University Pázmány P. s. 1/A, 1117, Budapest, Hungary

Search for other papers by G. Juhász in
Current site
Google Scholar
PubMed
Close
,
GY. Csikós Department of General Zoology, Eötvös Loránd University, Please ask the editor of the journal.

Search for other papers by GY. Csikós in
Current site
Google Scholar
PubMed
Close
, and
M. Sass Department of General Zoology, Eötvös Loránd University, Please ask the editor of the journal.

Search for other papers by M. Sass in
Current site
Google Scholar
PubMed
Close
Restricted access

The process of autophagy, or bulk degradation of cellular proteins and organelles through an autophagosomic-lysosomal pathway constantly functions in all eukary- otic cells. Also a type of physiological cell death exists, which is best characterized with the strenghtening of the autophagic process, but no DNA degradation or caspase activation can be detected, in contrast to apoptosis [2]. Autophagy can be promoted in various ways: addiction of certain drugs (like vin- blastine [6]), hormones (like 20-hidroxy-ecdysone [3]) or simply nutrition d&epriva- tion [5] leads to the increased amount of proteins degraded by lysosomal enzymes. The isolation and cloning of yeast autophagy mutants gives an excellent opportu- nity to examine their putative homologs in Drosophila melanogaster. Fourteen genes have been identified in Saccharomyces cerevisiae required for autophagy [5], based on several mutant phenotypes, &like the sorting problems of vacuolar enzymes such as carboxypeptidase Y or aminopeptidase I, or the less of viability and the inability of degrading cytosolic proteins like fatty acid synthase during starvation. Nine of them (apg5, apg6, apg7, apg12, aut1, aut2, aut7, aut9, vps4) appear to have clear homologs in the fly and human genome, using the BLAST tools at http://work- bench.sdsc.edu, http://www.ncbi.nlm.nih.gov and http://www.fruitfly.org (BLASTN, TBLASTN services) for sequence similarity searches. The sequence alignment of the yeast, fly and human proteins can be seen in Figure 1. The high degree of similarity suggests existing homology among these genes, although new and lost functions were identified in some cases [7]. Remarkably, vps4 exists in two slightly different copies in human, and aut7 exists in multiple different copies as well (two in Drosophila and three in Homo), suggesting different roles, or at least different regulation. As expected, fly and human genes are much more simi- lar to each other than to the yeast homolog, promising that Drosophila experiments will better contribute to the understanding of the roles of these genes in detail in high- er eukaryotes. The precise function of these genes is still unclear, however, molecu-

  • Klionsky, D. J., Ohsumi, Y. (1999) Annu. Rev. Cell. Dev. Biol. 15, 1-32.

    () 15 Annu. Rev. Cell. Dev. Biol. .

  • Kovács, J., Réz, G. (1989) Revis. Biol. Celular 20, 63-78.

    () 20 Revis. Biol. Celular .

  • Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., Levine, B. (1999) Nature 402, 672-676.

    () 402 Nature .

  • Lockshin, R. A., Beaulaton, J. (1979) Tissue Cell 4, 803-819.

    () 4 Tissue Cell .

  • Zamore, P. D., Tuschl, T, Sharp, P. A., Bartel, D. P. (2000) Cell 101, 25-33.

    () 101 Cell .

  • Bowen, I. D., Mullarkey, K., Morgan, S. M. (1996) Microsc. Res. Tech. 34, 202-217.

    () 34 Microsc. Res. Tech. .

  • Bursch, W., Hochegger, K., Török, L., Marian, B., Ellinger, A., Hermann, R. S. (2000) J. Cell. Sci. 113, 1189-1198.

    () 113 J. Cell. Sci. .

  • Dai, J. D., Gilbert, L. I. (1999) Cell Tissue Res. 297, 319-327.

    () 297 Cell Tissue Res. .

  • Fortier, E., Belote, J. M. (2000) Genesis 26, 240-244.

    () 26 Genesis .

  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)