Authors:
C. L. Frank Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary

Search for other papers by C. L. Frank in
Current site
Google Scholar
PubMed
Close
,
Géza Dávid Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary

Search for other papers by Géza Dávid in
Current site
Google Scholar
PubMed
Close
,
S. Czirok Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary

Search for other papers by S. Czirok in
Current site
Google Scholar
PubMed
Close
,
C. Vincze Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary

Search for other papers by C. Vincze in
Current site
Google Scholar
PubMed
Close
,
M. J. Manzano Occupational Health Service, Hospital Santo Antonio dos Capuchos Lisbon, Portugal

Search for other papers by M. J. Manzano in
Current site
Google Scholar
PubMed
Close
, and
B. Vígh Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary

Search for other papers by B. Vígh in
Current site
Google Scholar
PubMed
Close
Restricted access

The significance of autonomic nerves reaching the pineal organ was already investigated in connection to the innervation of pinealocytes and mediating light information from the retina for periodic melatonin secretion. In earlier works we found that some autonomic nerve fibers are not secretomotor but terminate on arteriolar smooth muscle cells in the pineal organ of the mink (Mustela vison). Studying in serial sections the pineal organ of the mink and 15 other mammalian species in the present work, we investigated whether similar axons of vasomotor-type are generally present in the wall of pineal vessels, further, whether they reach the organ via the conarian nerves or via periarterial plexuses. In all species investigated, axons of perivasal nerve bundles were found to form terminal enlargements on the smooth muscle layer of pineal arterioles. The neuromuscular endings contain several synaptic and some granular vesicles. Axon terminals are also present around pineal veins. In serial sections, we found that the so-called conarian autonomic nerves reach the pineal organ alongside pineal veins draining into the great internal cerebral vein. Similar nerves present near arteries of the arachnoid enter the pineal meningeal capsule and septa by arterioles, both perivenous and periarterial nerves form terminals of vasomotor-type. The arteriomotor and venomotor regulation of the tone of the vessels of the pineal organ may serve the vascular support for circadian and circannual periodic changes in metabolic activity of the pineal tissue.

  • Kolmer, W., Löwy, R. (1922) Beiträge zur Physiologie der Zirberdrüse. Pflügers Archiv ges. Physiol. 196, 1-14.

    'Beiträge zur Physiologie der Zirberdrüse ' () 196 Pflügers Archiv ges. Physiol. : 31 -14 .

    • Search Google Scholar
  • 10. Korf, H. W. (1996) Innervation of the pineal gland. In: Burnstock, G. (ed.) The Autonomic Nervous System. Vol. 10, Unsicker, K. (ed.) Autonomic - Endocrine Interactions. Harwood Academic Publishers, Amsterdam, 129-180.

  • Ling, E. A., Tan, S. H., Wong, W. C. (1990) Synaptic junctions between sympathetic axon terminals and pinealocytes in the monkey, Macaca fascicularis. Anat. Embryol, 182, 21-27.

    'Synaptic junctions between sympathetic axon terminals and pinealocytes in the monkey ' () 182 Macaca fascicularis. Anat. Embryol : 31 -27 .

    • Search Google Scholar
  • Liu, W., Moller, M. (2000) Innervation of the rat pineal gland by PACAP-immunoreactive fibers originating in the trigeminal ganglion: a degeneration study. Cell Tissue. Res. 301, 369-373.

    'Innervation of the rat pineal gland by PACAP-immunoreactive fibers originating in the trigeminal ganglion: a degeneration study ' () 301 Cell Tissue. Res. : 31 -373 .

    • Search Google Scholar
  • Matsushima, S., Sakai, Y., Hira, Y. (1999) Peptidergic peripheral nervous systems in the mammalian pineal gland. Micr. Res. Techn. 46, 265-280.

    'Peptidergic peripheral nervous systems in the mammalian pineal gland ' () 46 Micr. Res. Techn. : 31 -280 .

    • Search Google Scholar
  • Matsuura, T., Sano, Y. (1986) Characteristic pattern of monoaminergic nerve fibers in the pineal organ of the monkey. Cell Tissue Res. 245, 453-456.

    'Characteristic pattern of monoaminergic nerve fibers in the pineal organ of the monkey ' () 245 Cell Tissue Res. : 31 -456 .

    • Search Google Scholar
  • Moller, M. (1992) Fine structure of the pinealopetal innervation of the mammalian pineal gland. Micr. Res. Techn. 21, 188-204.

    'Fine structure of the pinealopetal innervation of the mammalian pineal gland ' () 21 Micr. Res. Techn. : 31 -204 .

    • Search Google Scholar
  • Moller, M., Fahrenkrug, J., Hannibal, J. (1999) Innervation of the rat pineal gland by pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive nerve fibers. Cell Tissue Res. 296, 247-257.

    'Innervation of the rat pineal gland by pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive nerve fibers ' () 296 Cell Tissue Res. : 31 -257 .

    • Search Google Scholar
  • Nowicki, M., Lewczuk, B., Kosacka, J., Majewski, M., Przybylska-Gornowicz, B. (2002) Pituitary adenylate cyclase-activating polypeptide-immunoreactive (PACAP-IR) nerve fibers in the pig pineal gland. Folia Histochem. Cytobiol. 40, 149-150.

    'Pituitary adenylate cyclase-activating polypeptide-immunoreactive (PACAP-IR) nerve fibers in the pig pineal gland ' () 40 Folia Histochem. Cytobiol. : 31 -150 .

    • Search Google Scholar
  • Romijn, H. J. (1973) Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L.). III. An electron microscopic investigation of the innervation. Z. Zellforsch, 141, 545-560.

    'Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L.). III. An electron microscopic investigation of the innervation ' () 141 Z. Zellforsch : 31 -560 .

    • Search Google Scholar
  • Schon, F., Allen, J. M., Yeats, J. C., Allen, Y. S., Ballesta, J., Polak, J. M., Kelly, J. S., Bloom, S. R. (1985) Neuropeptide Y innervation of the rodent pineal gland and cerebral blood vessels. Neurosci. Lett. 57, 65-71.

    'Neuropeptide Y innervation of the rodent pineal gland and cerebral blood vessels ' () 57 Neurosci. Lett. : 31 -71 .

    • Search Google Scholar
  • Pellegrino de Iraldi, A., Zieher, L. M., De Robertis, E. (1965) Ultrastructure and pharmacological studies of nerve endings in the pineal organ. Progr. Brain. Res. 10, 389-422.

    'Ultrastructure and pharmacological studies of nerve endings in the pineal organ ' () 10 Progr. Brain. Res. : 31 -422 .

    • Search Google Scholar
  • Reiter, R. J. (1991) Pineal melatonin: cell biology of its synthesis and its physiological interactions. Endocrinol. Reviews 12, 151-180.

    'Pineal melatonin: cell biology of its synthesis and its physiological interactions ' () 12 Endocrinol. Reviews : 31 -180 .

    • Search Google Scholar
  • Reuss, S., Schröder, H. (1988) Principal neurons projecting to the pineal gland in close association with small intensely fluorescent cells in the superior cervical ganglion of rats. Cell Tissue. Res. 254, 97-100.

    'Principal neurons projecting to the pineal gland in close association with small intensely fluorescent cells in the superior cervical ganglion of rats ' () 254 Cell Tissue. Res. : 31 -100 .

    • Search Google Scholar
  • Shiotani, Y., Jin, K. L., Kawai, Y., Kiyama, H. (1989) Immunohistochemical studies on innervation of the mammalian pineal gland. In: Reiter R. J. and Pand, S. F. (eds) Advances in Pineal Research. Libbey, London, Vol. 3, 49-54.

    Advances in Pineal Research , ().

  • Ueck, M. (1979) Innervation of the vertabrate pineal. In: Ariëns-Kappers, J. and Pévet, P. (eds) The Pineal Gland of Vertebrates Including man. Progr. Brain Res. 52, 45-88.

    The Pineal Gland of Vertebrates Including man. Progr. Brain Res , ().

  • Vígh, B., Vígh-Teichmann, I. (1992) Two components of the pineal organ of the mink (Mustela vison): their structural similarity to submammalian pineal complexes and calcification. Arch. Histol. Cytol. 55, 477-489.

    'Two components of the pineal organ of the mink (Mustela vison): their structural similarity to submammalian pineal complexes and calcification ' () 55 Arch. Histol. Cytol. : 31 -489 .

    • Search Google Scholar
  • Vígh, B., Vígh-Teichmann, I. (1999) Comparative morphophysiology of the pineal organs of vertebrates. In: Joy, K. P., Krishna, A. and Haldar, C. (eds) Comparative Endocrinology and Reproduction. Narosa Publishing House, New Delhi, 479-506.

    Comparative Endocrinology and Reproduction , ().

  • Vígh, B., Manzano, M. J., Zádori, A., Frank, C. L., Lukáts, A., Röhlich, P., Szél, A., Dávid, C. (2002) Nonvisual photoreceptors of the deep brain, pineal organs, and retina. Histol. Histopathol. 17, 555-590.

    'Nonvisual photoreceptors of the deep brain, pineal organs, and retina ' () 17 Histol. Histopathol. : 31 -590 .

    • Search Google Scholar
  • Vollrath, L. (1981) The pineal organ. In: Oksche, A. and Vollrath, L. (eds) Handbuch der Mikroskopischen Anatomie des Menschen. Springer, Berlin, Heidelberg, New York, Vol. VI/7, pp. 1-665.

    Handbuch der Mikroskopischen Anatomie des Menschen , () 1 -665 .

  • Bargmann, W. (1943) Die Epiphysis cerebri. In: Möllendorff, W. (ed.) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin, 309-502.

    Handbuch der mikroskopischen Anatomie des Menschen , ().

  • Bowers, C. W., Dahm, L. M., Zigmond, R. E. (1984) The number and distribution of sympathetic neurons that innervate the rat pineal gland. Neuroscience 13, 87-96.

    'The number and distribution of sympathetic neurons that innervate the rat pineal gland ' () 13 Neuroscience : 31 -96 .

    • Search Google Scholar
  • Cozzi, B., Mikkelsen, J. D., Merati, D., Capsoni, S., Moller, M. (1990) Vasoactive intestinal peptide-like immunoreactive nerve fibers in the pineal gland of the sheep. J. Pineal Res. 8, 41-47.

    'Vasoactive intestinal peptide-like immunoreactive nerve fibers in the pineal gland of the sheep ' () 8 J. Pineal Res. : 31 -47 .

    • Search Google Scholar
  • Huang, H. T., Lin, H. S. (1984) Synaptic junction between adrenergic axon varicosity and the pinealocyte in the rat. J. Pineal Res. 1, 281-291.

    'Synaptic junction between adrenergic axon varicosity and the pinealocyte in the rat ' () 1 J. Pineal Res. : 31 -291 .

    • Search Google Scholar
  • Kappers, J. A. (1969) The mammalian pineal organ. J. Neuro- Visc. Relation 9, 140-184.

    'The mammalian pineal organ ' () 9 J. Neuro- Visc. Relation : 31 -184 .

  • Klein, D. C. (1985) Photoneural regulation of the mammalian pineal gland. In: Evered, D. and Clark, S. (eds) Photoperiodism, melatonin and the pineal gland. Pitman, London, 38-56.

    Photoperiodism, melatonin and the pineal gland , ().

  • Hartmann, F. (1957) Über die Innervation der Epiphysis cerebri einiger Säugetiere. Z. Zellforsch. 46, 416-429.

    'Über die Innervation der Epiphysis cerebri einiger Säugetiere ' () 46 Z. Zellforsch. : 31 -429 .

    • Search Google Scholar
  • Axelrod, J. (1974) The pineal gland: a neurochemical transducer. Science 184, 1341-1348.

    'The pineal gland: a neurochemical transducer ' () 184 Science : 31 -1348 .

  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)