View More View Less
  • 1 Institut für Biologie, Neurobiologie, Freie Universität Berlin Königin-Luise-Str. 28/30, D-14195 Berlin, Germany
  • 2 Institut für Biologie, Neurobiologie, Freie Universität Berlin Königin-Luise-Str. 28/30, D-14195 Berlin, Germany
  • 3 Department of Neurobiology & Anatomy, University of Texas, Houston Medical School Houston, TX, USA
Restricted access

To understand the cellular mechanisms of olfactory learning in the honeybee brain we study the physiology of identified neurons within the olfactory pathway. Here, we review data on the voltage-sensitive and ligand-gated ionic currents ofmushroom body Kenyon cells and antennal lobe neurons in vitro and in situ. Both cell types generate action potentials in vitro, but have different voltage-sensitive K+ currents. They express nicotinic acetylcholine receptors and ionotropic GABA receptors, representing the major transmitter systems in the insect olfactory system. Our data are interpreted with respect to learning-dependent plasticity in the honeybee brain.

  • Kandel, E. R. (2001) The molecular biology of memory storage: A dialogue between genes and synapses. Science 294, 1030-1038.

    'The molecular biology of memory storage: A dialogue between genes and synapses ' () 294 Science : 31 -1038.

    • Search Google Scholar
  • Benjamin, P. R. (2000) A systems approach to the cellular analysis of associative learning in the pond snail Lymnaea. Learn. Mem. 7, 124-131.

    'A systems approach to the cellular analysis of associative learning in the pond snail Lymnaea ' () 7 Learn. Mem. : 31 -131.

    • Search Google Scholar
  • Bicker, G., Schäfer, S., Kingan, T. G. (1985) Mushroom body feedback interneurons in the honeybee show GABA-like immunoreactivity. Brain Res. 360, 394-397.

    'Mushroom body feedback interneurons in the honeybee show GABA-like immunoreactivity ' () 360 Brain Res. : 31 -397.

    • Search Google Scholar
  • Cleland, T. A. (1996) Inhibitory glutamate receptor channels. Mol. Neurobiol. 13, 97-136.

    'Inhibitory glutamate receptor channels ' () 13 Mol. Neurobiol. : 31 -136.

  • Menzel, R., Heyne, A., Kinzel, C., Gerber, B., Fiala, A. (1999) Pharmacological dissociation between the reinforcing, sensitizing, and response-releasing functions of reward in honeybee classical conditioning. Behav. Neurosci. 113, 744-754.

    'Pharmacological dissociation between the reinforcing, sensitizing, and response-releasing functions of reward in honeybee classical conditioning ' () 113 Behav. Neurosci. : 31 -754.

    • Search Google Scholar
  • Müller, U. (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27, 159-168.

    'Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees ' () 27 Neuron : 31 -168.

    • Search Google Scholar
  • Müller, U. (2002) Learning in honeybees: from molecules to behaviour. Zoology 105, 313-320.

    'Learning in honeybees: from molecules to behaviour ' () 105 Zoology : 31 -320.

  • Grünewald, B. (1999) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee, Apis mellifera. J. Comp. Phys. A, 185, 565-576.

    'Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee ' () 185 Apis mellifera. J. Comp. Phys. A : 31 -576.

    • Search Google Scholar
  • Grünewald, B. (2003) Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J. Exp. Biol. 206, 117-129.

    'Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway ' () 206 J. Exp. Biol. : 31 -129.

    • Search Google Scholar
  • Gundelfinger, E. D., Schulz, R. (2000) Insect nicotinic acetylcholine receptors: Genes, structure, physiological and pharmacological properties. In: Clementi, F. (ed.), Handbook of experimental pharmacology. Springer-Verlag, Heidelberg. pp. 497-521.

    Handbook of experimental pharmacology , () 497 -521.

  • Hammer, M. (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59-63.

    'An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees ' () 366 Nature : 31 -63.

    • Search Google Scholar
  • Kloppenburg, P., Kirchhof, B. S., Mercer, A. R. (1999) Voltage-activated currents from adult honeybee (Apis mellifera) antennal motor neurons recorded in vitro and in situ. J. Neurophysiol. 81, 39-48.

    'Voltage-activated currents from adult honeybee (Apis mellifera) antennal motor neurons recorded in vitro and in situ ' () 81 J. Neurophysiol. : 31 -48.

    • Search Google Scholar
  • Kreissl, S., Bicker, G. (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J. Comp. Neurol. 286, 71-84.

    'Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee ' () 286 J. Comp. Neurol. : 31 -84.

    • Search Google Scholar
  • Goldberg, F., Grünewald, B., Rosenboom, Menzel, R. (1999) Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J. Physiol. 514, 759-768.

    'Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera ' () 514 J. Physiol. : 31 -768.

    • Search Google Scholar
  • Grohmann, L., Blenau, W., Erber, J., Ebert, P. R., Stränkes, T., Baumann, A. (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J. Neurochem. 86, 725-735.

    'Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain ' () 86 J. Neurochem. : 31 -735.

    • Search Google Scholar
  • Gronenberg, W. (1987) Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain. Exp. Biol. 46, 115-125.

    'Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain ' () 46 Exp. Biol. : 31 -125.

    • Search Google Scholar
  • Grünewald, B. (1999) Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J. Comp. Neurol. 404, 114-126.

    'Morphology of feedback neurons in the mushroom body of the honeybee ' () 404 Apis mellifera. J. Comp. Neurol. : 31 -126.

    • Search Google Scholar
  • Hammer, M., Menzel, R. (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146-156.

    'Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees ' () 5 Learn. Mem. : 31 -156.

    • Search Google Scholar
  • Heisenberg, M. (2003) Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4, 266-275.

    'Mushroom body memoir: from maps to models ' () 4 Nat. Rev. Neurosci. : 31 -275.

  • Heisenberg, M., Borst, A., Wagner, S., Byers, D. (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenetics 2, 1-30.

    'Drosophila mushroom body mutants are deficient in olfactory learning ' () 2 J. Neurogenetics : 31 -30.

    • Search Google Scholar
  • Hosie, A. M., Aronstein, K., Sattelle, D. B., ffrench-Constant, R. H. (1997) Molecular biology of insect neuronal GABA receptors. Trends Neurosci. 20, 578-583.

    'Molecular biology of insect neuronal GABA receptors ' () 20 Trends Neurosci. : 31 -583.

  • McGuire, S. E., Le, P. T., Davis, R. L. (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293, 1330-1333.

    'The role of Drosophila mushroom body signaling in olfactory memory ' () 293 Science : 31 -1333.

    • Search Google Scholar
  • Menzel, R. (2001) Searching for the memory trace in a mini-brain, the honeybee. Learning and Memory 8, 853-862.

    'Searching for the memory trace in a mini-brain, the honeybee ' () 8 Learning and Memory : 31 -862.

    • Search Google Scholar
  • Masuhr, T., Menzel, R. (1972) Learning experiments on the use of sidespecific information in the olfactory and visual system in the honeybee of (Apis mellifica). In: Wehner, R. (ed.) Information processing in the visual systems of arthropods. Springer, Berlin-Heidelberg-New York, pp. 315-322.

    Information processing in the visual systems of arthropods , () 315 -322.

  • Pelz, C., Jander, J., Rosenboom, H., Hammer, M., Menzel, R. (1999) IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. J. Neurophysiol. 81, 1749-1759.

    'IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation ' () 81 J. Neurophysiol. : 31 -1759.

    • Search Google Scholar
  • Schröter, U., Malun, D. (2000) Formation of antennal lobe and mushroom body neuropils during metamorphosis in the honeybee, Apis mellifera. J. Comp. Neurol. 422, 229-245.

    'Formation of antennal lobe and mushroom body neuropils during metamorphosis in the honeybee ' () 422 Apis mellifera. J. Comp. Neurol. : 31 -245.

    • Search Google Scholar
  • 29. Wersing, A., Grünewald, B. (2003) An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J. Exp. Biol. (submitted).

  • Wicher, D., Walther, C., Wicher, C. (2001) Non-synaptic ion channels in insects - basic properties of currents and their modulation in neurons and skeletal muscles. Prog. Neurobio. 64, 431-525.

    'Non-synaptic ion channels in insects - basic properties of currents and their modulation in neurons and skeletal muscles ' () 64 Prog. Neurobio. : 31 -525.

    • Search Google Scholar
  • Wüstenberg, D., Boytcheva, M., Grünewald, B., Baxter, D. A., Menzel, R., Byrne, J. H. (2003) Current and voltage-clamp analyses and computer simulations of Kenyon cells in the honeybee. J. Neuphysiol. (in press).

    'Current and voltage-clamp analyses and computer simulations of Kenyon cells in the honeybee ' () J. Neuphysiol. : (in press).

    • Search Google Scholar
  • Wüstenberg, D., Grünewald, B. (2003) The neuronal acetylcholine receptor of the honeybee: a nicotinic receptor with an unusual pharmacology. J. Comp. Physiol. A. (in press).

    'The neuronal acetylcholine receptor of the honeybee: a nicotinic receptor with an unusual pharmacology ' () J. Comp. Physiol. A. : (in press).

    • Search Google Scholar
  • Rogero, O., Hämmerle, B., Tejedor, F. J. (1997) Diverse expression and distribution of Shaker potassium channels during the development of the Drosophila nervous system. J. Neurosci. 17, 5108-5118.

    'Diverse expression and distribution of Shaker potassium channels during the development of the Drosophila nervous system ' () 17 J. Neurosci. : 31 -5118.

    • Search Google Scholar
  • Schäfer, S., Rosenboom, H., Menzel, R. (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J. Neurosci. 14, 4600-4612.

    'Ionic currents of Kenyon cells from the mushroom body of the honeybee ' () 14 J. Neurosci. : 31 -4612.

    • Search Google Scholar
  • Yusuyama, K., Meinertzhagen, I. A., Schürmann, F.-W. (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J. Comp. Neurol. 445, 211-226.

    'Synaptic organization of the mushroom body calyx in Drosophila melanogaster ' () 445 J. Comp. Neurol. : 31 -226.

    • Search Google Scholar
  • Zars, T., Wolf, R., Davis, R. L., Heisenberg, M. (2000) Tissue-specific expression of a type 1 adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram. Learning and Memory 7, 18-31.

    'Tissue-specific expression of a type 1 adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram ' () 7 Learning and Memory : 31 -31.

    • Search Google Scholar