View More View Less
  • 1 Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary
  • 2 Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary
  • 3 Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary
  • 4 Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary
  • 5 Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary
  • 6 Department of Human Morphology and Developmental Biology Semmelweis University, Budapest, Hungary
Restricted access

In earlier works we have found that in the mammalian pineal organ, a part of autonomic nerves - generally thought to mediate light information from the retina - form vasomotor endings on smooth muscle cells of vessels. We supposed that they serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. In the present work, we investigated whether peripheral nerves present in the photoreceptive pineal organs of submammalians form similar terminals on microvessels. In the cyclostome, fish, amphibian, reptile and bird species investigated, autonomic nerves accompany vessels entering the arachnoidal capsule and interfollicular meningeal septa of the pineal organ. The autonomic nerves do not enter the pineal tissue proper but remain in the perivasal meningeal septa isolated by basal lamina. They are composed of unmyelinated and myelinated fibers and form terminals around arterioles, veins and capillaries. The terminals contain synaptic and granular vesicles. Comparing various vertebrates, more perivasal terminals were found in reptiles and birds than in the cyclostome, fish and amphibian pineal organs. Earlier, autonomic nerves of the pineal organs were predominantly investigated in connection with the innervation of pineal tissue. The perivasal terminals found in various submammalians show that a part of the pineal autonomic fibers are vasomotoric in nature, but the vasosensor function of some fibers cannot be excluded. We suppose that the vasomotor regulation of the pineal microvessels in the photosensory submamalian pineal - like in mammals - may serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. The higher number of perivasal terminals in reptiles and birds may correspond to the higher metabolic activity of the tissues in more differentiated species.

  • Vigh, B., Manzano, M. J., Frank, C. L., Dávid, C. Lukáts, Á., Szél, Á. (2003) Change in the control of the biological circadian rhythms during evolution. The role of the deep brain photoreceptors, pineal organs and retina. In: Csernus, V., Mess, B. (eds) Rhytmic biological processes. The role of the biological clocks. Dialóg Campus, Budapest, Pécs, pp. 43-92.

    Change in the control of the biological circadian rhythms during evolution. The role of the deep brain photoreceptors, pineal organs and retina , () 43 -92.

    • Search Google Scholar
  • Vollrath, L. (1981) The pineal organ. In: Oksche, A., Vollrath, H. (eds). Handbuch der Mikroskopischen Anatomie des Menschen. Vol. VI/7. Springer, Berlin, Heidelberg, New York, pp. 1-665.

    The pineal organ , () 1 -665.

  • Vigh, B., Vigh-Teichmann, I. (1999) Comparative morphophysiology of the pineal organs of vertebrates. In: Joy, K. P., Krishna, A., Haldar, C. (eds). Comparative endocrinology and reproduction. Narosa Publishing House, New Delhi, pp. 479-506

    Comparative morphophysiology of the pineal organs of vertebrates , () 479 -506.

  • Vigh, B., Manzano, M. J., Zédori, A., Frank, C. L., Lukáts, A., Röhlich, P., Szál, A., Dávid, C. (2002) Nonvisual photoreceptors of the deep brain, pineal organs, and retina. Histol. Histopathol. 17, 555-590

    'Nonvisual photoreceptors of the deep brain, pineal organs, and retina ' () 17 Histol. Histopathol : 555 -590.

    • Search Google Scholar
  • Wartenberg, H., Baumgarten, H. G. (1969) Untersuchungen zur fluoreszens- und elektronenmikroskopischen Darstellung von 5-Hydroxytryptamin (5-HT) im Pinealorgan von Lacerta viridis und Lacerta muralis. Z. Anat. Entw.-gesch. 128, 185-210.

    'Untersuchungen zur fluoreszens- und elektronenmikroskopischen Darstellung von 5-Hydroxytryptamin (5-HT) im Pinealorgan von Lacerta viridis und Lacerta muralis ' () 128 Z. Anat. Entw.-gesch : 185 -210.

    • Search Google Scholar
  • Korf, H. W. (1996) Innervation of the pineal gland. In: Burnstock, G. (ed.) The autonomic nervous system. Vol. 10. Unsicker, K. (ed.), Autonomic - Endocrine Interactions. Harwood Academic Publishers, Amsterdam, pp. 129-180.

    Innervation of the pineal gland , () 129 -180.

  • Krimer, L. S., Muly, E. C., Williams, G. V., Goldman-Rakic, P. S. (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat. Neurosci. 1, 286-289.

    'Dopaminergic regulation of cerebral cortical microcirculation ' () 1 Nat. Neurosci : 286 -289.

    • Search Google Scholar
  • Mikkelsen, J. D., Cozzi, B., Moller, M. (1991) Efferent projections from the lateral geniculate nucleus to the pineal complex of the Mongolian gerbil (Meriones unguiculatus). Cell Tissue Res. 264, 95-102.

    'Efferent projections from the lateral geniculate nucleus to the pineal complex of the Mongolian gerbil (Meriones unguiculatus) ' () 264 Cell Tissue Res : 95 -102.

    • Search Google Scholar
  • Moller, M., Baeres, F. M. M. (2002) The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 309, 139-150.

    'The anatomy and innervation of the mammalian pineal gland ' () 309 Cell Tissue Res : 139 -150.

    • Search Google Scholar
  • Moller, M., Liu, W. (1999) Innervation of the rat pineal gland by nerve fibers originating in the sphenopalatine, otic and trigeminal ganglia. Anterograde in vivo tracing study. Reprod. Nutr. Dev. 39, 345-353.

    'Innervation of the rat pineal gland by nerve fibers originating in the sphenopalatine, otic and trigeminal ganglia. Anterograde in vivo tracing study ' () 39 Reprod. Nutr. Dev : 345 -353.

    • Search Google Scholar
  • Owman, C., Rüdeberg, C. (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z. Zellforsch. 107, 522-550.

    'Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine ' () 107 Z. Zellforsch : 522 -550.

    • Search Google Scholar
  • Fejér, Zs., Röhlich, P., Szél, Á., Dávid, Cs., Zádori, A., Manzano, M. J., Vigh, B. (2001) Comparative ultrastructure and cytochemistry of the avian pineal organ. Micr. Res. Techn. 53, 12-24.

    'Comparative ultrastructure and cytochemistry of the avian pineal organ ' () 53 Micr. Res. Techn : 12 -24.

    • Search Google Scholar
  • Frank, C. L., Dávid, C., Czirok, S., Vincze, C., Manzano, M. J., Vigh, B. (2003) Autonomic nerves terminating on smooth muscle cells of vessels in the pineal organ of various mammals. Acta Biol. Hung, 54, 233-240.

    'Autonomic nerves terminating on smooth muscle cells of vessels in the pineal organ of various mammals ' () 54 Acta Biol. Hung : 233.

    • Search Google Scholar
  • Holmgren, N. (1917) Zur Frage der Epiphysen-Innervation bei Teleostiern. Folia Neuro-biol. (Lpz.) 10, 1-15.

    'Zur Frage der Epiphysen-Innervation bei Teleostiern ' () 10 Folia Neuro-biol. (Lpz.) : 1 -15.

    • Search Google Scholar
  • Edvinsson, L., Hogestatt, E. D., Uddman, R., Auer, L. M. (1983) Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity. J. Cereb. Blood Flow Metab. 3, 226-230.

    'Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity ' () 3 J. Cereb. Blood Flow Metab : 226 -230.

    • Search Google Scholar
  • Edvinsson, L., Gulbenkian, S., Barroso, C. P., Cunha e Sa, M., Polak, J. M., Mortensen, A., Jorgensen, L., Jansen-Olesen, I. (1998) Innervation of the human middle meningeal artery: immunocytochemistry, ultrastructure, and role of endothelium vor vasomotility. Peptides 19, 1213-1225.

    'Innervation of the human middle meningeal artery: immunocytochemistry, ultrastructure, and role of endothelium vor vasomotility ' () 19 Peptides : 1213 -1225.

    • Search Google Scholar
  • Owman, C., Rüdeberg, C., Ueck, M. (1970) Fluoreszenzmikroskopischer Nachweis biogener Monoamine in der epiphysis cerebri von Rana esculenta und Rana pipiens. Z. Zellforsch. 111, 550-558.

    'Fluoreszenzmikroskopischer Nachweis biogener Monoamine in der epiphysis cerebri von Rana esculenta und Rana pipiens ' () 111 Z. Zellforsch : 550 -558.

    • Search Google Scholar
  • Ueck, M. (1979) Innervation of the vertebrate pineal. Progr. Brain. Res. 52, 45-87.

    'Innervation of the vertebrate pineal ' () 52 Progr. Brain. Res : 45 -87.

  • Vigh, B., Vigh-Teichmann, I. (1988) Comparative neurohistology and immunocytochemistry of the pineal complex with special reference to CSF-contacting neuronal structures. Pineal Res. Rev. 6, 1-65.

    'Comparative neurohistology and immunocytochemistry of the pineal complex with special reference to CSF-contacting neuronal structures ' () 6 Pineal Res. Rev : 1 -65.

    • Search Google Scholar
  • Vigh, B., Vigh-Teichmann, I. (1992) Two components of the pineal organ of the mink (Mustela vison): their structural similarity to submammalian pineal complexes and calcification. Arch. Histol. Cytol. 55, 477-489.

    'Two components of the pineal organ of the mink (Mustela vison): their structural similarity to submammalian pineal complexes and calcification ' () 55 Arch. Histol. Cytol : 477 -489.

    • Search Google Scholar
  • Quay, W. B., Kappers, J. A., Jongkind, J. F. (1968) Innervation and fluorescence histochemistry of monoamines in the pineal organ of a snake (Natrix natrix). J. Neuro-Visc. Rel. 32, 11-15.

    'Innervation and fluorescence histochemistry of monoamines in the pineal organ of a snake (Natrix natrix) ' () 32 J. Neuro-Visc. Rel : 11 -15.

    • Search Google Scholar
  • Reuss, S., Schröder, H. (1988) Principal neurons projecting to the pineal gland in close association with small intensely fluorescent cells in the superior cervical ganglion of rats. Cell Tissue. Res. 254, 97-100.

    'Principal neurons projecting to the pineal gland in close association with small intensely fluorescent cells in the superior cervical ganglion of rats ' () 254 Cell Tissue. Res : 97 -100.

    • Search Google Scholar
  • Uddman, R., Hara, H., Edvinsson, L. (1989) Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry J. Auton. Nerv. Syst. 26, 69-75.

    'Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry ' () 26 J. Auton. Nerv. Syst : 69 -75.

    • Search Google Scholar
  • Ueck, M. (1973) Fluoreszenzmikroskopische und Elektronenmikroskopische Untersuchungen am Pinealorgan verschiedener Vogelarten. Z. Zellforsch. 137, 37-62.

    'Fluoreszenzmikroskopische und Elektronenmikroskopische Untersuchungen am Pinealorgan verschiedener Vogelarten ' () 137 Z. Zellforsch : 37 -62.

    • Search Google Scholar