View More View Less
  • 1 University of Szeged Department of Biotechnology Szeged Hungary
  • 2 Hungarian Academy of Sciences Institute of Biophysics, Biological Research Center Szeged Hungary
Restricted access

A bacterium capable to grow on sulfanilic acid as sole carbon, nitrogen and sulfur source has been isolated. A unique feature of this strain is that it contains the full set of enzymes necessary for the biodegradation of sulfanilic acid. Taxonomical analysis identified our isolate as Sphingomonas subarctica SA1 sp. The biodegradation pathway of sulfanilic acid was investigated at the molecular level. Screening the substrate specificity of the strain disclosed its capacity to degrade six analogous aromatic compounds including p -aminobenzoic acid. Moreover, the strain was successfully used for removal of oil contaminations. S. subarctica SA1 seemed to use distinct enzyme cascades for decomposition of these molecules, since alternative enzymes were induced in cells grown on various substrates. However, the protein patterns appearing upon induction by sulfanilic acid and sulfocatechol were very similar to each other indicating common pathways for the degradation of these substrates. Cells grown on sulfanilic acid could convert p -aminobenzoic acid to some extent and vice versa. Two types of ring cleaving dioxygenases were detected in the cells grown on various substrates: one preferred protocatechol, while the other had higher activity with sulfocatechol. This latter enzyme, named as sulfocatechol dioxygenase was partially purified and characterized.

  • Boyd, D. R., Sharma, N. D., Allen, C. C. R. (2001) Aromatic dioxygenases: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 12 , 564–573.

    Allen C. C. R. , 'Aromatic dioxygenases: molecular biocatalysis and applications ' (2001 ) 12 Curr. Opin. Biotechnol. : 564 -573.

    • Search Google Scholar
  • Bugg, T. D. H. (2001) Oxygenases: mechanisms and structural motifs for O 2 activation. Curr. Opin. Chem. Biol. 5 , 550–555.

    Bugg T. D. H. , 'Oxygenases: mechanisms and structural motifs for O2 activation ' (2001 ) 5 Curr. Opin. Chem. Biol. : 550 -555.

    • Search Google Scholar
  • Contzen, M., Burger, S., Stolz, A. (2001) Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol. Mol. Microbiol. 41 , 199–205.

    Stolz A. , 'Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol ' (2001 ) 41 Mol. Microbiol. : 199 -205.

    • Search Google Scholar
  • Dangmann, E., Stolz, A., Kuhm, A. E., Hammer, A., Feigel, B., Noisommit-Rizzi, N., Rizzi, M., Reuss, M., Knackmuss, H.-J. (1996) Degradation of 4-aminobenzenesulfonate by a two-species bacterial coculture. Biodegradation 7 , 223–229.

    Knackmuss H.-J. , 'Degradation of 4-aminobenzenesulfonate by a two-species bacterial coculture ' (1996 ) 7 Biodegradation : 223 -229.

    • Search Google Scholar
  • Dua, M., Singh, A., Sethunathan, N. Johri, A. K. (2002) Biotechnology and bioremediation: sucesses and limitations. Appl. Microbiol. Biotechnol. 59 , 143–152.

    Johri A. K. , 'Biotechnology and bioremediation: sucesses and limitations ' (2002 ) 59 Appl. Microbiol. Biotechnol. : 143 -152.

    • Search Google Scholar
  • Feigel, B. J., Knackmuss, H.-J. (1988) Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid. FEMS Microbiol. Lett. 55 , 113–118.

    Knackmuss H.-J. , 'Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid ' (1988 ) 55 FEMS Microbiol. Lett. : 113 -118.

    • Search Google Scholar
  • Feigel, B. J., Knackmuss, H.-J. (1993) Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch. Microbiol. 159 , 124–130.

    Knackmuss H.-J. , 'Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture ' (1993 ) 159 Arch. Microbiol. : 124 -130.

    • Search Google Scholar
  • Gibson, D. T., Parales, R. E. (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 11 , 236–243.

    Parales R. E. , 'Aromatic hydrocarbon dioxygenases in environmental biotechnology ' (2000 ) 11 Curr. Opin. Biotechnol. : 236 -243.

    • Search Google Scholar
  • Heider, J., Fuchs, G. (1997) Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243 , 577–596.

    Fuchs G. , 'Anaerobic metabolism of aromatic compounds ' (1997 ) 243 Eur. J. Biochem. : 577 -596.

    • Search Google Scholar
  • Hammer, A., Stolz, A., Knackmuss, H.-J. (1996) Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol. Arch. Microbiol. 166 , 92–100.

    Knackmuss H.-J. , 'Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol ' (1996 ) 166 Arch. Microbiol. : 92 -100.

    • Search Google Scholar
  • Harayama, S., Kok, M., Neidle, E. L. (1992) Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46 , 565–601.

    Neidle E. L. , 'Functional and evolutionary relationships among diverse oxygenases ' (1992 ) 46 Annu. Rev. Microbiol. : 565 -601.

    • Search Google Scholar
  • Mason, J. R., Cammack, R. (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 46 , 277–305.

    Cammack R. , 'The electron-transport proteins of hydroxylating bacterial dioxygenases ' (1992 ) 46 Annu. Rev. Microbiol. : 277 -305.

    • Search Google Scholar
  • Nohynek, L. J., Nurmiaho-Lassila, E. L., Suhonen, E. L., Busse, H. J., Mohammadi, M., Hantula, J., Rainey, F., Salkinoja-Salonen, M. S. (1996) Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int. J. Syst. Bacteriol. 46 , 1042–1055.

    Salkinoja-Salonen M. S. , 'Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. ' (1996 ) 46 Int. J. Syst. Bacteriol. : 1042 -1055.

    • Search Google Scholar
  • Perei, K., Rákhely, G., Kiss, I., Polyák, B., Kovács, K. L. (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis . Appl. Microbiol. Biotechnol. 55 , 101–107.

    Kovács K. L. , 'Biodegradation of sulfanilic acid by Pseudomonas paucimobilis ' (2001 ) 55 Appl. Microbiol. Biotechnol. : 101 -107.

    • Search Google Scholar
  • Sambrook, J., Maniatis, T., Fritsch, E. F. (1989) Molecular Cloning: A Laboratory Manual . Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Fritsch E. F. , '', in Molecular Cloning: A Laboratory Manual , (1989 ) -.

  • Van der Meer, J. R., de Vos, W. M., Harayama, S., Zehnder, A. J. B. (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56 , 677–694.

    Zehnder A. J. B. , 'Molecular mechanisms of genetic adaptation to xenobiotic compounds ' (1992 ) 56 Microbiol. Rev. : 677 -694.

    • Search Google Scholar