Authors:
Éva KuruczBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by Éva Kurucz in
Current site
Google Scholar
PubMed
Close
,
B. VácziBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by B. Váczi in
Current site
Google Scholar
PubMed
Close
,
R. MárkusBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by R. Márkus in
Current site
Google Scholar
PubMed
Close
,
Barbara LaurinyeczBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by Barbara Laurinyecz in
Current site
Google Scholar
PubMed
Close
,
P. VilmosBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by P. Vilmos in
Current site
Google Scholar
PubMed
Close
,
J. ZsámbokiBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by J. Zsámboki in
Current site
Google Scholar
PubMed
Close
,
Kinga CsorbaBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by Kinga Csorba in
Current site
Google Scholar
PubMed
Close
,
Elisabeth GateffJohannes Gutenberg Universität Mainz Institut für Genetik Mainz Germany

Search for other papers by Elisabeth Gateff in
Current site
Google Scholar
PubMed
Close
,
D. HultmarkUmea University Umea Center for Molecular Pathology Umea Sweden

Search for other papers by D. Hultmark in
Current site
Google Scholar
PubMed
Close
, and
I. AndóBiological Research Center of the Hungarian Academy of Sciences Institute of Genetics Szeged Hungary

Search for other papers by I. Andó in
Current site
Google Scholar
PubMed
Close
Restricted access

We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.

  • Asha, H., Nagy, I., Kovacs, G., Stetson, D., Ando, I., Dearolf, C. R. (2003) Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics 163 , 203–215.

    Dearolf C. R. , 'Analysis of Ras-induced overproliferation in Drosophila hemocytes ' (2003 ) 163 Genetics : 203 -215 .

    • Search Google Scholar
  • Braun, A., Lemaitre, B., Lanot, R., Zachary, D., Meister, M. (1997) Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap. Genetics 147 , 623–634.

    Meister M. , 'Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap ' (1997 ) 147 Genetics : 623 -634 .

    • Search Google Scholar
  • Delpuech, J.-M., Frey, F., Carton, Y. (2005) Action of insecticides on the cellular immune reaction of Drosophila melanogaster against the parasitoid Leptopilina Boulardi . Environm. Toxicol. Chem. 15 , 2267–2271.

    Carton Y. , 'Action of insecticides on the cellular immune reaction of Drosophila melanogaster against the parasitoid Leptopilina Boulardi ' (2005 ) 15 Environm. Toxicol. Chem. : 2267 -2271 .

    • Search Google Scholar
  • Elrod-Erickson, M., Mishra, S., Schneider, D. (2000) Interactions between the cellular and humoral immune responses in Drosophila . Curr. Biol. 10 , 781–784.

    Schneider D. , 'Interactions between the cellular and humoral immune responses in Drosophila ' (2000 ) 10 Curr. Biol. : 781 -784 .

    • Search Google Scholar
  • Gillespie, J. P., Kanost, M. R., Trenczek, T. (1997) Biological mediators of insect immunity. Ann. Rev. Entomol. 42 , 611–643.

    Trenczek T. , 'Biological mediators of insect immunity ' (1997 ) 42 Ann. Rev. Entomol. : 611 -643 .

    • Search Google Scholar
  • Hoffmann, J. A. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7 , 4–10.

    Hoffmann J. A. , 'Innate immunity of insects ' (1995 ) 7 Curr. Opin. Immunol. : 4 -10 .

    • Search Google Scholar
  • Hultmark, D. (1993) Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 5 , 178–183.

    Hultmark D. , 'Immune reactions in Drosophila and other insects: a model for innate immunity ' (1993 ) 5 Trends Genet. : 178 -183 .

    • Search Google Scholar
  • Jung, S. H., Evans, C. J., Uemura, C., Banerjee, U. (2005) The Drosophila lymph gland as a developmental model of hematopoiesis. Developm. 132 , 2521–2533.

    Banerjee U. , 'The Drosophila lymph gland as a developmental model of hematopoiesis ' (2005 ) 132 Developm. : 2521 -2533 .

    • Search Google Scholar
  • Kiger, J. A., Natzle, J. E., Green, M. M. (2001) Hemocytes are essential for wing maturation in Drosophila melanogaster . Proc. Natl. Acad. Sci. 98 , 10190–10195.

    Green M. M. , 'Hemocytes are essential for wing maturation in Drosophila melanogaster ' (2001 ) 98 Proc. Natl. Acad. Sci. : 10190 -10195 .

    • Search Google Scholar
  • Kishimoto, T. (1997) Leucocyte Typing VI, White Cell Differentiation Antigens . Oxford University Press.

  • Kocks, C., Cho, J. H., Nehme, N., Ulvila, J., Pearson, A. M., Meister, M., Strom, C., Conto, S. L., Hetru, C., Stuart, L. M., Stehle, T., Hoffmann, J. A., Reichhart, J. M., Ferrandon, D., Ramet, M., Ezekowitz, R. A. (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila . Cell 123 , 335–346.

    Ezekowitz R. A. , 'Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila ' (2005 ) 123 Cell : 335 -346 .

    • Search Google Scholar
  • Konrad, L., Becker, G., Schmidt, A., Kockner, T., Kaufer-Stillger, G., Dreschers, S., Edstrom, J. E., Gateff, E. (1994) Cloning, structure, cellular localization, and possible function of the tumor suppressor gene lethal(3)malignant blood neoplasm-1 of Drosophila melanogaster . Dev. Biol. 163 , 98–111.

    Gateff E. , 'Cloning, structure, cellular localization, and possible function of the tumor suppressor gene lethal(3)malignant blood neoplasm-1 of Drosophila melanogaster ' (1994 ) 163 Dev. Biol. : 98 -111 .

    • Search Google Scholar
  • Kohler, G., Milstein, C. (1976) Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur. J. Immunol. 7 , 511–519.

    Milstein C. , 'Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion ' (1976 ) 7 Eur. J. Immunol. : 511 -519 .

    • Search Google Scholar
  • Kurucz, E., Zettervall, C. J., Sinka, R., Vilmos, P., Pivarcsi, A., Ekengren, S., Hegedüs, Z., Andó, I., Hultmark, D. (2003) Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila . Proc. Natl. Acad. Sci. USA 100 , 2622–2627.

    Hultmark D. , 'Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila ' (2003 ) 100 Proc. Natl. Acad. Sci. USA : 2622 -2627 .

    • Search Google Scholar
  • Kurucz, É., Márkus, R., Zsámboki, J., Folkl-Medzihradszky, K., Darula, Zs., Vilmos, P., Udvardy, A., Krausz, I., Lukacsovich, T., Gateff, E., Zettervall, C.-J., Hultmark, D., Andó, I. (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17 , 649–654.

    Andó I. , 'Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes ' (2007 ) 17 Curr. Biol. : 649 -654 .

    • Search Google Scholar
  • Lanot, R., Zachary, D., Holder, F., Meister, M. (2001) Postembryonic hematopoiesis in Drosophila . Dev. Biol. 230 , 243–257.

    Meister M. , 'Postembryonic hematopoiesis in Drosophila ' (2001 ) 230 Dev. Biol. : 243 -257 .

    • Search Google Scholar
  • Lebestky, T., Chang, T., Hartenstein, V., Banerjee, U. (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288 , 146–149.

    Banerjee U. , 'Specification of Drosophila hematopoietic lineage by conserved transcription factors ' (2000 ) 288 Science : 146 -149 .

    • Search Google Scholar
  • Márkus, R., Kurucz, E., Rus, F., Andó, I. (2005) Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster . Immunol. Lett. 101 , 108–111.

    Andó I. , 'Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster ' (2005 ) 101 Immunol. Lett. : 108 -111 .

    • Search Google Scholar
  • Mathey-Prevot, B., Perrimon, N. (1998) Mammalian and Drosophila blood: JAK of all trades? Cell. 92 , 697–700.

    Perrimon N. , 'Mammalian and Drosophila blood: JAK of all trades? ' (1998 ) 92 Cell. : 697 -700 .

    • Search Google Scholar
  • Meister, M., Lagueux, M. (2003) Drosophila blood cells. Cell. Microbiol. 5 , 573–580.

    Lagueux M. , 'Drosophila blood cells ' (2003 ) 5 Cell. Microbiol. : 573 -580 .

  • Ramet, M., Pearson, A., Manfruelli, P., Li, X., Koziel, H., Gobel, V., Chung, E., Krieger, M., Ezekowitz, R. A. (2001) Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 6 , 1027–1038.

    Ezekowitz R. A. , 'Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria ' (2001 ) 6 Immunity : 1027 -1038 .

    • Search Google Scholar
  • Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B., Ezekowitz, R. A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli . Nature 416 , 644–648.

    Ezekowitz R. A. , 'Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli ' (2002 ) 416 Nature : 644 -648 .

    • Search Google Scholar
  • Ritzki, T. M. (1978) Fat body. In: Ashburner, A., Wright, T. R. F. (eds) The Genetics and Biology of Drosophila , Vol 2b, Academic Press, New York. pp. 561–601.

    Ritzki T. M. , '', in The Genetics and Biology of Drosophila, Vol 2b , (1978 ) -.

  • Rizki, R. M., Rizki, T. M. (1984) The cellular deffence system of Drosophila melanogaster . In: King, R. C., Akal, H. (eds) Insect Ultrastructure , Volume 2. New York, Plenum Publishing Corporation, pp. 579–604.

    Rizki T. M. , '', in Insect Ultrastructure, Volume 2 , (1984 ) -.

  • Roos, E., Björklund, G., Engström, Y. (1998) In vivo regulation of tissue-specific and LPS-inducible expression of the Drosophila Cecropin genes. Insect Mol. Biol. 7 , 51–62.

    Engström Y. , 'In vivo regulation of tissue-specific and LPS-inducible expression of the Drosophila Cecropin genes ' (1998 ) 7 Insect Mol. Biol. : 51 -62 .

    • Search Google Scholar
  • Rus, F., Kurucz, E., Márkus, R., Sinenko, S. A., Laurinyecz, B., Pataki, C., Gausz, J., Hegedüs, Z., Udvardy, A., Hultmark, D., Andó, I. (2006) Expression pattern of Filamin-240 in Drosophila blood cells. Gene Expr. Patterns 8 , 928–934.

    Andó I. , 'Expression pattern of Filamin-240 in Drosophila blood cells ' (2006 ) 8 Gene Expr. Patterns : 928 -934 .

    • Search Google Scholar
  • Shrestha, R., Gateff, E. (1982) Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster. Dev. Growth Differ. 24 , 65–82.

    Gateff E. , 'Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster ' (1982 ) 24 Dev. Growth Differ. : 65 -82 .

    • Search Google Scholar
  • Sokol, N., Cooley, L. (1999) Drosophila filamin encoded by the cheerio locus is a component of ovarian ring canals. Curr. Biol. 9 , 1221–1230.

    Cooley L. , 'Drosophila filamin encoded by the cheerio locus is a component of ovarian ring canals ' (1999 ) 9 Curr. Biol. : 1221 -1230 .

    • Search Google Scholar
  • Vilmos, P., Kurucz, E. (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62 , 59–66.

    Kurucz E. , 'Insect immunity: evolutionary roots of the mammalian innate immune system ' (1998 ) 62 Immunol. Lett. : 59 -66 .

    • Search Google Scholar
  • Vilmos, P., Nagy, I., Kurucz, E., Hultmark, D., Gateff, E., Andó, I. (2004) A rapid rosetting method for separation of hemocyte sub-populations of Drosophila melanogaster . Dev. Comp. Immunol. 28 , 555–563.

    Andó I. , 'A rapid rosetting method for separation of hemocyte sub-populations of Drosophila melanogaster ' (2004 ) 28 Dev. Comp. Immunol. : 555 -563 .

    • Search Google Scholar
  • Zettervall, C. J., Anderl, I., Williams, M. J., Palmer, R., Kurucz, E., Andó, I., Hultmark, D. (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 101 , 14192–14197.

    Hultmark D. , 'A directed screen for genes involved in Drosophila blood cell activation ' (2004 ) 101 Proc. Natl. Acad. Sci. USA : 14192 -14197 .

    • Search Google Scholar
  • Collapse
  • Expand
  • Top

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 46 2 2
May 2022 99 6 5
Jun 2022 146 2 2
Jul 2022 35 1 0
Aug 2022 30 0 0
Sep 2022 34 0 0
Oct 2022 1 0 0