Author: T. Kiss 1
View More View Less
  • 1 Hungarian Academy of Sciences Department of Experimental Zoology, Balaton Limnological Research Institute Tihany Hungary
Restricted access

Voltage-dependent sodium channels have a decisive role in the generation of action potentials (AP) in many types of cells. In addition to the fast inactivating Na-current, associated with AP generation, the Na-channel can give rise to a noninactivating or persistent Na-current. The latter current generally comprises up to 5% of the transient current having important physiological consequences. It was established that persistent Na-currents have functional significance in setting the membrane potential in a subthreshold range regulating by this way dendritic depolarisations, repetitive firing and enhancing synaptic transmission. Voltage dependent sodium channel genes have been identified in a variety of invertebrates, as well as mammalian and nonmammalian vertebrates. It has been established that the biophysical properties, pharmacology and gene organization of invertebrate sodium channels are largely similar to the vertebrate ones, supporting the view that the ancestral sodium channel was established before the evolutionary separation of the invertebrates from the vertebrates. Although different isoforms of voltage sensitive Na-channels have now been identified the mechanism for persistent current remains controversial. An important yet unanswered question is whether persistent and fast inactivating Na-currents arise from different sets of sodium channels or whether the persistent Na-current results from different gating of the same channel type. The aim of the present review is to discuss the origin and the function of the persistent current, focusing on data derived from an invertebrate animal.

  • Agrawal, N., Hamam, B. N., Magistretti, J., Alonso, A., Ragsdale, D. S. (2001) Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience 102 , 53–64.

    Ragsdale D. S. , 'Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons ' (2001 ) 102 Neuroscience : 53 -64.

    • Search Google Scholar
  • Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Automatic Control 19 , 716–723.

    Akaike H. , 'A new look at the statistical model identification ' (1974 ) 19 IEEE Trans. Automatic Control : 716 -723.

    • Search Google Scholar
  • Alzheimer, C., Schwindt, P. C., Crill, W. E. (1993) Modal gating of Na + channels as a mechanism of persistent Na + current in pyramidal neurons from rat and cat sensorimotor cortex. J. Neurosci. 13 , 660–673.

    Crill W. E. , 'Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex ' (1993 ) 13 J. Neurosci. : 660 -673.

    • Search Google Scholar
  • Anderson, P. A. V. (1987) Properties and pharmacology of a TTX-insensitive Na + current in neurons of the jellyfish Cyanea-Capillata. J. Exp. Biol. 133 , 231–248.

    Anderson P. A. V. , 'Properties and pharmacology of a TTX-insensitive Na+ current in neurons of the jellyfish Cyanea-Capillata ' (1987 ) 133 J. Exp. Biol. : 231 -248.

    • Search Google Scholar
  • Angstadt, J. D. (1999) Persistent inward currents in cultured Retzius cells of the medicinal leech. J. Comp. Physiol. [A] . 184 , 49–61.

    Angstadt J. D. , 'Persistent inward currents in cultured Retzius cells of the medicinal leech ' (1999 ) 184 J. Comp. Physiol. [A] : 49 -61.

    • Search Google Scholar
  • Armstrong, C. M., Bezanilla, F., Rojas, E. (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62 , 375–391.

    Rojas E. , 'Destruction of sodium conductance inactivation in squid axons perfused with pronase ' (1973 ) 62 J. Gen. Physiol. : 375 -391.

    • Search Google Scholar
  • Brown, A. M., Schwindt, P. C., Crill, W. E. (1994) Different voltage dependence of transient and persistent Na + currents is compatible with modal-gating hypothesis for sodium channels. J. Neurophysiol. 71 , 2562–2565.

    Crill W. E. , 'Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels ' (1994 ) 71 J. Neurophysiol. : 2562 -2565.

    • Search Google Scholar
  • Butera, R. J., Jr., Rinzel, J., Smith, J. C. (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82 , 382–397.

    Smith J. C. , 'Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons ' (1999 ) 82 J. Neurophysiol. : 382 -397.

    • Search Google Scholar
  • Caffrey, J. M., Eng, D. L., Black, J. A., Waxman, S. G., Kocsis, J. D. (1992) Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res. 592 , 283–297.

    Kocsis J. D. , 'Three types of sodium channels in adult rat dorsal root ganglion neurons ' (1992 ) 592 Brain Res. : 283 -297.

    • Search Google Scholar
  • Chandler, W. K., Meves, H. (1970) Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J. Physiol. 211 , 653–678.

    Meves H. , 'Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution ' (1970 ) 211 J. Physiol. : 653 -678.

    • Search Google Scholar
  • Chen, N., Lucero, M. T. (1999) Transient and persistent tetrodotoxin-sensitive sodium currents in squid olfactory receptor neurons. J. Comp. Physiol. A 184 , 63–72.

    Lucero M. T. , 'Transient and persistent tetrodotoxin-sensitive sodium currents in squid olfactory receptor neurons ' (1999 ) 184 J. Comp. Physiol. A : 63 -72.

    • Search Google Scholar
  • Clay, J. R. (2003) On the persistent sodium current in squid giant axons. J. Neurophysiol. 89 , 640–644.

    Clay J. R. , 'On the persistent sodium current in squid giant axons ' (2003 ) 89 J. Neurophysiol. : 640 -644.

    • Search Google Scholar
  • Colmers, W. F., Lewis, D. V., Wilson, W. A. (1982) Cs + loading reveals Na + -dependent persistent inward current and negative slope resistance region in Aplysia giant neurons. J. Neurophysiol. 48 , 1191–1200.

    Wilson W. A. , 'Cs+ loading reveals Na+-dependent persistent inward current and negative slope resistance region in Aplysia giant neurons ' (1982 ) 48 J. Neurophysiol. : 1191 -1200.

    • Search Google Scholar
  • Correa, A. M., Bezanilla, F. (1994) Gating of the squid sodium channel at positive potentials: II. Single channels reveal two open states. Biophys. J. 66 , 1864–1878.

    Bezanilla F. , 'Gating of the squid sodium channel at positive potentials: II. Single channels reveal two open states ' (1994 ) 66 Biophys. J. : 1864 -1878.

    • Search Google Scholar
  • Cox, J. J., Reimann, F., Nicholas, A. K., Thornton, G., Roberts, E., Springell, K., Karbani, G., Jafri, H., Mannan, J., Raashid, Y., Al-Gazali, L., Hamamy, H., Valente, E. M., Gorman, S., Williams, R., McHale, D. P., Wood, J. N., Gribble, F. M. Woods, C. G. (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444 , 894–898.

    Woods C. G. , 'An SCN9A channelopathy causes congenital inability to experience pain ' (2006 ) 444 Nature : 894 -898.

    • Search Google Scholar
  • Crill, W. E. (1996) Persistent sodium current in mammalian central neurons. Annu. Rev. Physiol. 58 , 349–362.

    Crill W. E. , 'Persistent sodium current in mammalian central neurons ' (1996 ) 58 Annu. Rev. Physiol. : 349 -362.

    • Search Google Scholar
  • Cummins, T. R., Howe, J. R., Waxman, S. G. (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J. Neurosci. 18 , 9607–9619.

    Waxman S. G. , 'Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel ' (1998 ) 18 J. Neurosci. : 9607 -9619.

    • Search Google Scholar
  • Davis, R. E., Stuart, A. E. (1988) A persistent, TTX-sensitive sodium current in an invertebrate neuron with neurosecretory ultrastructure. J. Neurosci. 8 , 3978–3991.

    Stuart A. E. , 'A persistent, TTX-sensitive sodium current in an invertebrate neuron with neurosecretory ultrastructure ' (1988 ) 8 J. Neurosci. : 3978 -3991.

    • Search Google Scholar
  • Defaix, A., Lapied, B. (2005) Role of a novel maintained low-voltage-activated inward current permeable to sodium and calcium in pacemaking of insect neurosecretory neurons. Invert. Neurosci. 5 , 135–146.

    Lapied B. , 'Role of a novel maintained low-voltage-activated inward current permeable to sodium and calcium in pacemaking of insect neurosecretory neurons ' (2005 ) 5 Invert. Neurosci. : 135 -146.

    • Search Google Scholar
  • Dib-Hajj, S., Black, J. A., Cummins, T. R., Waxman, S. G. (2002) NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci. 25 , 253–259.

    Waxman S. G. , 'NaN/Nav1.9: a sodium channel with unique properties ' (2002 ) 25 Trends Neurosci. : 253 -259.

    • Search Google Scholar
  • Elinder, F., Arhem, P. (1997) Tail currents in the myelinated axon of Xenopus laevis suggest a two-open-state Na channel. Biophys. J. 73 , 179–185.

    Arhem P. , 'Tail currents in the myelinated axon of Xenopus laevis suggest a two-open-state Na channel ' (1997 ) 73 Biophys. J. : 179 -185.

    • Search Google Scholar
  • Fleidervish, I. A., Gutnick, M. J. (1996) Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J. Neurophysiol. 76 , 2125–2130.

    Gutnick M. J. , 'Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices ' (1996 ) 76 J. Neurophysiol. : 2125 -2130.

    • Search Google Scholar
  • French, C. R., Sah, P., Buckett, K. J., Gage, P. W. (1990) A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol. 95 , 1139–1157.

    Gage P. W. , 'A voltage-dependent persistent sodium current in mammalian hippocampal neurons ' (1990 ) 95 J. Gen. Physiol. : 1139 -1157.

    • Search Google Scholar
  • Gilly, W. F., Armstrong, C. M. (1984) Threshold channels — a novel type of sodium channel in squid giant axon. Nature 309, 448–450.

    Armstrong C. M. , 'Threshold channels — a novel type of sodium channel in squid giant axon ' (1984 ) 309 Nature : 448 -450.

    • Search Google Scholar
  • Hammarström, A. K. M., Gage, P. W. (1999) Nitric oxide increases persistent sodium current in rat hippocampal neurons. J. Physiology 520, 451–461.

    Gage P. W. , 'Nitric oxide increases persistent sodium current in rat hippocampal neurons ' (1999 ) 520 J. Physiology : 451 -461.

    • Search Google Scholar
  • Herzog, R. I., Cummins, T. R., Waxman, S. G. (2001) Persistent TTX-resistant Na + current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol. 86 , 1351–1364.

    Waxman S. G. , 'Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons ' (2001 ) 86 J. Neurophysiol. : 1351 -1364.

    • Search Google Scholar
  • Hutcheon, B., Miura, R. M., Puil, E. (1996) Subthreshold membrane resonance in neocortical neurons. J. Neurophysiol. 76 , 683–697.

    Puil E. , 'Subthreshold membrane resonance in neocortical neurons ' (1996 ) 76 J. Neurophysiol. : 683 -697.

    • Search Google Scholar
  • Kallen, R. G., Sheng, Z. H., Yang, J., Chen, L. Q., Rogart, R. B., Barchi, R. L. (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron 4 , 233–242.

    Barchi R. L. , 'Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle ' (1990 ) 4 Neuron : 233 -242.

    • Search Google Scholar
  • Kay, A. R., Sugimori, M., Llinas, R. (1998) Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J. Neurophysiol . 80 , 1167–1179.

    Llinas R. , 'Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells ' (1998 ) 80 J. Neurophysiol : 1167 -1179.

    • Search Google Scholar
  • Kirsch, G. E., Brown, A. M. (1989) Kinetic properties of single sodium channels in rat heart and rat brain. J. Gen. Physiol. 93 , 85–99.

    Brown A. M. , 'Kinetic properties of single sodium channels in rat heart and rat brain ' (1989 ) 93 J. Gen. Physiol. : 85 -99.

    • Search Google Scholar
  • Kiss, T. (2003) Evidence for a persistent Na-conductance in identified command neurones of the snail, Helix pomatia. Brain Res. 989 , 16–25.

    Kiss T. , 'Evidence for a persistent Na-conductance in identified command neurones of the snail, Helix pomatia ' (2003 ) 989 Brain Res. : 16 -25.

    • Search Google Scholar
  • Kiss, T., Pirger, Z., Kemenes, G. (2008) Food aversive conditioning increases persistent current carried in withdrawal interneurons. Learn. Memory (submitted) .

  • Llinas, R., Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 305 , 171–195.

    Sugimori M. , 'Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices ' (1980 ) 305 J. Physiol. : 171 -195.

    • Search Google Scholar
  • Magistretti, J., Alonso, A. (1999) Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. J. Gen. Physiol. 114 , 491–509.

    Alonso A. , 'Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study ' (1999 ) 114 J. Gen. Physiol. : 491 -509.

    • Search Google Scholar
  • Magistretti, J., Ragsdale, D. S., Alonso, A. (1999) High conductance sustained single-channel activity responsible for the low-threshold persistent Na(+) current in entorhinal cortex neurons. J. Neurosci. 19 , 7334–7341.

    Alonso A. , 'High conductance sustained single-channel activity responsible for the low-threshold persistent Na(+) current in entorhinal cortex neurons ' (1999 ) 19 J. Neurosci. : 7334 -7341.

    • Search Google Scholar
  • Maurice, N., Tkatch, T., Meisner, M., Sprunger, L. K., Surmeier, D. J. (2001) D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and presistent sodium currents in prefrontal cortex pyramid. J. Neurosci. 21 , 2268–2277.

    Surmeier D. J. , 'D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and presistent sodium currents in prefrontal cortex pyramid ' (2001 ) 21 J. Neurosci. : 2268 -2277.

    • Search Google Scholar
  • Mittmann, T., Alzheimer, C. (1998) Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons. J. Neurophysiol . 79 , 1579–1582.

    Alzheimer C. , 'Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons ' (1998 ) 79 J. Neurophysiol : 1579 -1582.

    • Search Google Scholar
  • Nagy, K., Kiss, T., Hof, D. (1983) Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states. Pflugers Arch . 399 , 302–308.

    Hof D. , 'Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states ' (1983 ) 399 Pflugers Arch : 302 -308.

    • Search Google Scholar
  • Nikitin, E. S., Kiss, T., Staras, K., O’shea, M., Benjamin, P. R., Kemenes, G. (2006) Persistent sodium current is a target for cAMP-induced neuronal plasticity in a state-setting modulatory interneuron. J. Neurophysiol . 95 , 453–463.

    Kemenes G. , 'Persistent sodium current is a target for cAMP-induced neuronal plasticity in a state-setting modulatory interneuron ' (2006 ) 95 J. Neurophysiol : 453 -463.

    • Search Google Scholar
  • Nikitin, E. S., Vavoulis, D. V., Feng, J., O’shea, M., Benjamin, P. R., Kemenes, G. (2008) Persistent sodium current is a non-synaptic substrate for memory (submitted).

  • Ochs, G., Bromm, B., Schwarz, J. R. (1981) A three-state model for inactivation of sodium permeability. Biochim. Biophys. Acta 645 , 243–252.

    Schwarz J. R. , 'A three-state model for inactivation of sodium permeability ' (1981 ) 645 Biochim. Biophys. Acta : 243 -252.

    • Search Google Scholar
  • Ogata, N., Ohishi, Y. (2002) Molecular diversity of structure and function of the voltage-gated Na + channels. Jpn. J. Pharmacol. 88, 365–377.

    Ohishi Y. , 'Molecular diversity of structure and function of the voltage-gated Na+ channels ' (2002 ) 88 Jpn. J. Pharmacol. : 365 -377.

    • Search Google Scholar
  • Opdyke, C. A., Calabrese, R. L. (1994) A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech. J. Comp. Physiol. [A] . 175 , 781–789.

    Calabrese R. L. , 'A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech ' (1994 ) 175 J. Comp. Physiol. [A] : 781 -789.

    • Search Google Scholar
  • Patlak, J. B., Ortiz, M. (1985) Slow currents through single sodium channels of the adult rat heart. J. Gen. Physiol. 86 , 89–104.

    Ortiz M. , 'Slow currents through single sodium channels of the adult rat heart ' (1985 ) 86 J. Gen. Physiol. : 89 -104.

    • Search Google Scholar
  • Patlak, J. B., Ortiz, M. (1986) Two modes of gating during late Na + channel currents in frog sartorius muscle. J. Gen. Physiol. 87 , 305–326.

    Ortiz M. , 'Two modes of gating during late Na+ channel currents in frog sartorius muscle ' (1986 ) 87 J. Gen. Physiol. : 305 -326.

    • Search Google Scholar
  • Plummer, N. W., Meisler, M. H. (1999) Evolution and diversity of mammalian sodium channel genes. Genomics 57 , 323–331.

    Meisler M. H. , 'Evolution and diversity of mammalian sodium channel genes ' (1999 ) 57 Genomics : 323 -331.

    • Search Google Scholar
  • Raman, I. M., Bean, B. P. (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526.

    Bean B. P. , 'Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons ' (1997 ) 17 J. Neurosci. : 4517 -4526.

    • Search Google Scholar
  • Raman, I. M., Bean, B. P. (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J. Neurosci. 19 , 1663–1674.

    Bean B. P. , 'Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons ' (1999 ) 19 J. Neurosci. : 1663 -1674.

    • Search Google Scholar
  • Raman, I. M., Bean, B. P. (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys. J. 80 , 729–737.

    Bean B. P. , 'Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms ' (2001 ) 80 Biophys. J. : 729 -737.

    • Search Google Scholar
  • Renganathan, M., Dib-Hajj, S., Waxman, S. G. (2002) Na(v)1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Res. Mol. Brain Res. 106 , 70–82.

    Waxman S. G. , 'Na(v)1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons ' (2002 ) 106 Brain Res. Mol. Brain Res. : 70 -82.

    • Search Google Scholar
  • Roy, M. L., Narahashi, T. (1992) Differential properties of tetradotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J. Neurosci. 12 , 2104–2111.

    Narahashi T. , 'Differential properties of tetradotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons ' (1992 ) 12 J. Neurosci. : 2104 -2111.

    • Search Google Scholar
  • Rudy, B. (1978) Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. 283 , 1–21.

    Rudy B. , 'Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance ' (1978 ) 283 J. Physiol. : 1 -21.

    • Search Google Scholar
  • Saint, D. A., Ju, Y. K., Gage, P. W. (1992) A persistent sodium current in rat ventricular myocytes. J. Physiol. 453 , 219–231.

    Gage P. W. , 'A persistent sodium current in rat ventricular myocytes ' (1992 ) 453 J. Physiol. : 219 -231.

    • Search Google Scholar
  • Salgado, V. L., Yeh, J. Z., Narahashi, T. (1985) Voltage-dependent removal of sodium inactivation by N-bromoacetamide and pronase. Biophys. J. 47 , 567–571.

    Narahashi T. , 'Voltage-dependent removal of sodium inactivation by N-bromoacetamide and pronase ' (1985 ) 47 Biophys. J. : 567 -571.

    • Search Google Scholar
  • Stimers, J. R., Byerly, L. (1982) Slowing of sodium current inactivation by ruthenium red in snail neurons. J. Gen. Physiol. 80 , 485–497.

    Byerly L. , 'Slowing of sodium current inactivation by ruthenium red in snail neurons ' (1982 ) 80 J. Gen. Physiol. : 485 -497.

    • Search Google Scholar
  • Taddese, A., Bean, B. P. (2002) Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33 , 587–600.

    Bean B. P. , 'Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons ' (2002 ) 33 Neuron : 587 -600.

    • Search Google Scholar
  • The, Y. K., Fernandes, J., Popa, M. O., Alekov, A. K., Timmer, J., Lerche, H. (2006) Modeling of single noninactivating Na + channels: evidence for two open and several fast inactivated states. Biophys. J. 90 , 3511–3522.

    Lerche H. , 'Modeling of single noninactivating Na+ channels: evidence for two open and several fast inactivated states ' (2006 ) 90 Biophys. J. : 3511 -3522.

    • Search Google Scholar
  • Trimmer, J. S., Cooperman, S. S., Tomiko, S. A., Zhou, J. Y., Crean, S. M., Boyle, M. B., Kallen, R. G., Sheng, Z. H., Barchi, R. L., Sigworth, F. J. et al. (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3 , 33–49.

    Sigworth F. J. , 'Primary structure and functional expression of a mammalian skeletal muscle sodium channel ' (1989 ) 3 Neuron : 33 -49.

    • Search Google Scholar
  • Turrigiano, G., LeMasson, G., Marder, E. (1995) Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J. Neurosci. 15 , 3640–3652.

    Marder E. , 'Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons ' (1995 ) 15 J. Neurosci. : 3640 -3652.

    • Search Google Scholar
  • Ulbricht, W. (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85 , 1271–1301.

    Ulbricht W. , 'Sodium channel inactivation: molecular determinants and modulation ' (2005 ) 85 Physiol. Rev. : 1271 -1301.

    • Search Google Scholar
  • Waxman, S. G., Hains, B. C. (2006) Fire and phantoms after spinal cord injury: Na + channels and central pain. Trends Neurosci . 29 , 207–215.

    Hains B. C. , 'Fire and phantoms after spinal cord injury: Na+ channels and central pain ' (2006 ) 29 Trends Neurosci : 207 -215.

    • Search Google Scholar