View More View Less
  • 1 University of Pécs Department of Plant Physiology, Institute of Biology Ifjúság útja 6 H-7624 Pécs Hungary
Restricted access

In plants plenty of inducible defense-related proteins classified into 17 pathogenesis-related (PR) families have been described. Expression of homologous PR genes from the same family can be induced by the different defense hormones, like salicylic acid (SA), jasmonic acid (JA) or ethylene (ET), and are also regulated in a organ- or tissue-specific manner. A recently identified pathogenesis-related gene family, the PRLIP (pathogenesis-related lipase) has 9 members in Arabidopsis and their organization and expression pattern — as it is summarized in this study — is similar to the one of genes coding for other PR proteins. PRLIP3, PRLIP8 and PRLIP9 showed a relatively high expression in all tissues tested with a maximum in root (PRLIP3), stem (PRLIP8) or siliques (PRLIP9). The activity of PRLIP3 gene was further induced by SA and JA treatment. Other members (PRLIP1, PRLIP2, PRLIP4 and PRLIP6), however, were detected only in some of the tested organs. High levels of PRLIP1 mRNA occurred in all green tissues and in siliques, while in the latter PRLIP2 also displayed high expression. PRLIP6 and PRLIP4 exhibited root specific transcription while no mRNAs of PRLIP5 and PRLIP7 were detected in any plant tissues examined. In leaves SA treatment enhanced PRLIP1 and PRLIP2 expression, JA treatment induced PRLIP6 and ET treatment upregulated both PRLIP1 and PRLIP6. This organization and expression diversity of the PRLIP gene family is typical to plant PR genes suggesting the encoded proteins might serve essential functions in plant defense or priming.

  • Calendini, F., Martin, J.-F. (2005) PaupUP v1.0.3.1 A free graphical frontend for PA UP* Dos software.

  • Camera, S. L., GeoVroy, P., Samaha, H., Ndiaye, A., Rahim, G., Legrand, M., Thierry, H. (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J. 44, 810–825.

    Thierry H. , 'A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis ' (2005 ) 44 Plant J. : 810 -825.

    • Search Google Scholar
  • Clamp, M., Cuff, J., Searle, S. M., Barton, G. J. (2004) The Jalview Java Alignment Editor. Bioinformatics 20, 426–427.

    Barton G. J. , 'The Jalview Java Alignment Editor ' (2004 ) 20 Bioinformatics : 426 -427.

  • Falk, A., Feys, B. J., Frost, L. N., Jones, J. D., Daniels, M. J., Parker, J. E. (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA 96, 3292–3297.

    Parker J. E. , 'EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases ' (1999 ) 96 Proc. Natl. Acad. Sci. USA : 3292 -3297.

    • Search Google Scholar
  • Feys, B. J., Wiermer, M., Bhat, R. A., Mosian, L. J., Medina-Escobar, N., Neu, C., Cabral, A., Parker, J. E. (2005) Arabidopsis SENESCENCE-ASOCIATE D GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. The Plant Cell 17, 2601–2613.

    Parker J. E. , 'Arabidopsis SENESCENCE-ASOCIATE D GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity ' (2005 ) 17 The Plant Cell : 2601 -2613.

    • Search Google Scholar
  • Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., Chiang, Y., Acton, T. B., Montelione, G. T., Pichersky, E., Klessig, D. F., Tong, L. (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. PNAS 102, 1773–1778.

    Tong L. , 'Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity ' (2005 ) 102 PNAS : 1773 -1778.

    • Search Google Scholar
  • Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K. (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13, 2191–2210.

    Okada K. , 'The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis ' (2001 ) 13 Plant Cell : 2191 -2210.

    • Search Google Scholar
  • Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Mètraux, J.-P., Mauch-Mani, B. (2001) β-Aminobutyric acid-induced resistance in plants. Europ. J. Plant Pathol. 107, 29–37.

    Mauch-Mani B. , 'β-Aminobutyric acid-induced resistance in plants ' (2001 ) 107 Europ. J. Plant Pathol. : 29 -37.

    • Search Google Scholar
  • Jakab, G., Manrique, A., Zimmerli, L., Mètraux, J.-P., Mauch-Mani, B. (2003) Molecular characterization of a novel lipase-like pathogen-inducible gene family of Arabidopsis. Plant Physiol. 132, 2230–2239.

    Mauch-Mani B. , 'Molecular characterization of a novel lipase-like pathogen-inducible gene family of Arabidopsis ' (2003 ) 132 Plant Physiol. : 2230 -2239.

    • Search Google Scholar
  • Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M., Glazebrook, J. (1999) Arabidopsis thaliana PA D4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96, 13583–13588.

    Glazebrook J. , 'Arabidopsis thaliana PA D4 encodes a lipase-like gene that is important for salicylic acid signaling ' (1999 ) 96 Proc. Natl. Acad. Sci. USA : 13583 -13588.

    • Search Google Scholar
  • Kumar, D., Klessig, D. F. (2003) The high affinity salicylic acid binding protein (SABP2) is required for plant innate immunity and has SA-stimulated lipase activity. Proc. Natl. Acad. Sci. USA 100, 16101–16106.

    Klessig D. F. , 'The high affinity salicylic acid binding protein (SABP2) is required for plant innate immunity and has SA-stimulated lipase activity ' (2003 ) 100 Proc. Natl. Acad. Sci. USA : 16101 -16106.

    • Search Google Scholar
  • Lo, M., Taylor C., Wang, L., Nowack, L., Wang, T. W., Thompson, J. (2004) Characterization of an ultraviolet B-induced lipase in Arabidopsis. Plant Physiol. 135, 947–958.

    Thompson J. , 'Characterization of an ultraviolet B-induced lipase in Arabidopsis ' (2004 ) 135 Plant Physiol. : 947 -958.

    • Search Google Scholar
  • Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., Cameron, R. K. (2002) A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature 419, 399–403.

    Cameron R. K. , 'A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis ' (2002 ) 419 Nature : 399 -403.

    • Search Google Scholar
  • Mauch-Mani, B., Mètraux, J.-P. (1998) Salicylic acid and systemic acquired resistance to pathogen attack. Ann. Botany 82, 535–540.

    Mètraux J.-P. , 'Salicylic acid and systemic acquired resistance to pathogen attack ' (1998 ) 82 Ann. Botany : 535 -540.

    • Search Google Scholar
  • Mueller, M. J. (2004) Archetype signals in plants: the phytoprostanes. Curr. Opin. Plant. Biol. 7, 441–448.

    Mueller M. J. , 'Archetype signals in plants: the phytoprostanes ' (2004 ) 7 Curr. Opin. Plant. Biol. : 441 -448.

    • Search Google Scholar
  • Nandi, A., Welti, R., Shah, J. (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESOR OF FATTY ACID DESAT URASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16, 465–477.

    Shah J. , 'The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESOR OF FATTY ACID DESAT URASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance ' (2004 ) 16 Plant Cell : 465 -477.

    • Search Google Scholar
  • Oh, I. S., Park, A. R., Bae, M. S., Kwon, S. J., Kim, Y. S., Lee, J. E., Kang, N. Y., Lee, S., Cheong, H., Park, O. K. (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17, 2832–2847.

    Park O. K. , 'Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola ' (2005 ) 17 Plant Cell : 2832 -2847.

    • Search Google Scholar
  • Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., Klessig, D. F. (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113–116.

    Klessig D. F. , 'Methyl salicylate is a critical mobile signal for plant systemic acquired resistance ' (2007 ) 318 Science : 113 -116.

    • Search Google Scholar
  • Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., Van Loon, L. C. (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571–1580.

    Loon L. C. , 'A novel signaling pathway controlling induced systemic resistance in Arabidopsis ' (1998 ) 10 Plant Cell : 1571 -1580.

    • Search Google Scholar
  • Schöning, J. C., Streitner, C., Page, D. R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., Staiger, D. (2007) Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. Plant J. 52, 1119–1130.

    Staiger D. , 'Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation ' (2007 ) 52 Plant J. : 1119 -1130.

    • Search Google Scholar
  • Sticher, L., Mauch-Mani, B., Mètraux, J.-P. (1997) Systemic acquired resistance. Annu. Rev. Phytopathol. 35, 235–270.

    Mètraux J.-P. , 'Systemic acquired resistance ' (1997 ) 35 Annu. Rev. Phytopathol. : 235 -270.

    • Search Google Scholar
  • Swofford, D. L. (2000) PA UP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

    Swofford D. L. , '', in PA UP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4 , (2000 ) -.

  • Tamura, K., Dudley, J., Nei, M., Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Kumar S. , 'MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 ' (2007 ) 24 Mol. Biol. Evol. : 1596 -1599.

    • Search Google Scholar
  • Van Loon, L. C., van Kammen, A. (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40, 190–211.

    Kammen A. , 'Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus ' (1970 ) 40 Virology : 190 -211.

    • Search Google Scholar
  • Van Loon, L. C., Van Strien, E. A. (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55, 85–97.

    Strien E. A. , 'The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins ' (1999 ) 55 Physiol. Mol. Plant Pathol. : 85 -97.

    • Search Google Scholar
  • Van Loon, L. C., Rep, M., Pieterse, C. M. (2006) Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162.

    Pieterse C. M. , 'Significance of inducible defense-related proteins in infected plants ' (2006 ) 44 Annu. Rev. Phytopathol. : 135 -162.

    • Search Google Scholar
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., Barton, G. J. (2009) Jalview Version 2 — a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191.

    Barton G. J. , 'Jalview Version 2 — a multiple sequence alignment editor and analysis workbench ' (2009 ) 25 Bioinformatics : 1189 -1191.

    • Search Google Scholar
  • Wiermer, M., Feys, B. J., Parker, J. E. (2005) Plant immunity: the EDS1 regulatory node. Curr. Op. Plant Biol. 8, 383–389.

    Parker J. E. , 'Plant immunity: the EDS1 regulatory node ' (2005 ) 8 Curr. Op. Plant Biol. : 383 -389.

    • Search Google Scholar
  • Xing, D., Chen, Z. (2006) Effects of mutations and constitutive overexpression of EDS1 and PAD4 on plant resistance to different types of microbial pathogens. Plant Science 171, 251–262.

    Chen Z. , 'Effects of mutations and constitutive overexpression of EDS1 and PAD4 on plant resistance to different types of microbial pathogens ' (2006 ) 171 Plant Science : 251 -262.

    • Search Google Scholar
  • Yuan, J. S., Reed, A., Chen, F., Stewart, C. N. (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85.

    Stewart C. N. , 'Statistical analysis of real-time PCR data ' (2006 ) 7 BMC Bioinformatics : 85 -.

    • Search Google Scholar
  • Zhou, N., Tootle, T. L., Tsui, F., Klessig, D. L., Glazebrook, J. (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10, 1021–1030.

    Glazebrook J. , 'PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis ' (1998 ) 10 Plant Cell : 1021 -1030.

    • Search Google Scholar
  • Zimmerli, L., Jakab, G., Mètraux, J.-P., Mauch-Mani, B. (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97, 12920–12925.

    Mauch-Mani B. , 'Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid ' (2000 ) 97 Proc. Natl. Acad. Sci. USA : 12920 -12925.

    • Search Google Scholar

Editorial Board

      Csányi, Vilmos (Göd)
      Dudits, Dénes (Szeged)
      Falus, András (Budapest)
      Fischer, Ernő (Pécs)
      Gábriel, Róbert (Pécs)
      Gulya, Károly (Szeged)
      Gulyás, Balázs (Stockholm)
      Hajós, Ferenc (Budapest)
      Hámori, József (Budapest)
      Heszky, László (Gödöllő)
      Hideg, Éva (Szeged)
      E. Ito (Sanuki)
      Janda, Tibor (Martonvásár)
      Kavanaugh, Michael P. (Missoula)
      Kása, Péter (Szeged)
      Klein, Éva (Stockholm)
      Kovács, János (Budapest)
      Brigitte Mauch-Mani (Neuchâtel)
      Nässel, Dick R. (Stockholm)
      Nemcsók, János (Szeged)
      Péczely, Péter (Gödöllő)
      Roberts, D. F. (Newcastle-upon-Tyne)
      Sakharov, Dimitri A. (Moscow)
      Singh, Meharvan (Fort Worth)
      Sipiczky, Mátyás (Debrecen)
      Szeberényi, József (Pécs)
      Székely, György (Debrecen)
      Tari, Irma (Szeged)
      Vágvölgyi, Csaba (Szeged),
      L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)