It is thought that the prefrontal cortex (PFC) subserves cognitive control processes by coordinating the flow of information in the cerebral cortex. In the network of cortical areas the central position of the PFC makes difficult to dissociate processing and the cognitive function mapped to this region, especially when using whole brain imaging techniques, which can detect frequently activated regions. Accordingly, the present study showed particularly high rate of increase of published studies citing the PFC and imaging as compared to other fields of the neurosciences on the PubMed. Network measures used to characterize the role of the areas in signal flow indicated specialization of the different regions of the PFC in cortical processing. Notably, areas of the dorsolateral PFC and the anterior cingulate cortex, which received the highest number of citations, were identified as global convergence points in the network. These prefrontal regions also had central position in the dominant cluster consisted exclusively by the associational areas of the cortex. We also present findings relevant to models suggesting that control processes of the PFC are depended on serial processing, which results in bottleneck effects. The findings suggest that PFC is best understood via its role in cortical information processing.
Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E. (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72.
Bullmore E. , 'A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs ' (2006 ) 26 J. Neurosci. : 63 -72 .
Averbeck, B. B., Seo, M. (2008) The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput. Biol. 4, e1000050.
Seo M. , 'The statistical neuroanatomy of frontal networks in the macaque ' (2008 ) 4 PLoS Comput. Biol. : e1000050 -.
Baddeley, A. (2012) Working memory: Theories, models, and controversies. Annu Rev. Psychol. 63, 12.1–12.29.
Baddeley A. , 'Working memory: Theories, models, and controversies ' (2012 ) 63 Annu Rev. Psychol. : 12.1 -12.29 .
Banich, M. T., Compton, R. J. (2011) Cognitive Neuroscience (3rd ed.). Wadsworth Publishing.
Bányai, M., Négyessy, L., Bazsó, F. (2011) Organisation of signal flow in directed networks. Journal of Statistical Mechanics: theory and experiment. P06001. doi: 10.1088/1742-5468/2011/06/P06001
Bullmore, E., Sporns, O. (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
Sporns O. , 'Complex brain networks: graph theoretical analysis of structural and functional systems ' (2009 ) 10 Nat. Rev. Neurosci. : 186 -198 .
Constantinidis, C., Procyk, E. (2004) The primate working memory networks. Cogn. Affect Behav. Neurosci. 4, 444–465.
Procyk E. , 'The primate working memory networks ' (2004 ) 4 Cogn. Affect Behav. Neurosci. : 444 -465 .
Csárdi G. Nepusz T. 2006 The igraph software package for complex network research. Inter. Journal Complex Systems1695
Dehaene, S., Changeux, J. P. (2011) Experimental and theoretical approaches to conscious processing. Neuron. 70, 200–227.
Changeux J. P. , 'Experimental and theoretical approaches to conscious processing ' (2011 ) 70 Neuron. : 200 -227 .
Fortunato, S. (2009) Community detection in graphs Physics Reports 486, 75–174.
Fortunato S. , 'Community detection in graphs ' (2009 ) 486 Physics Reports : 75 -174 .
Fruchterman, T. M. J., Reingold, E. M. (1991) Graph Drawing by Force-Directed Placement. Software — Practice & Experience 21, 1129–1164.
Reingold E. M. , 'Graph Drawing by Force-Directed Placement ' (1991 ) 21 Software — Practice & Experience : 1129 -1164 .
Fuster, J. M. (1997) The prefrontal cortex. Anatomy, physiology and neuropsychology of the frontal lobe. Lippincott-Raven. Philadelphia, New York.
Fuster J. M. , '', in The prefrontal cortex. Anatomy, physiology and neuropsychology of the frontal lobe , (1997 ) -.
Gazzaniga, M. S., Ivry, R. B., Mangun, G. R. (2009) Cognitive Neuroscience: The biology of the mind (3rd ed.). New York: W. W. Norton.
Mangun G. R. , '', in Cognitive Neuroscience: The biology of the mind , (2009 ) -.
Gisiger, T., Dehaene, S., Changeux, J. P. (2000) Computational models of association cortex. Curr. Opin. Neurobiol. 10, 250–259.
Changeux J. P. , 'Computational models of association cortex ' (2000 ) 10 Curr. Opin. Neurobiol. : 250 -259 .
Honey, C. J., Kötter, R., Breakspear, M., Sporns, O. (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA. 104, 10240–10245.
Sporns O. , 'Network structure of cerebral cortex shapes functional connectivity on multiple time scales ' (2007 ) 104 Proc. Natl. Acad. Sci. USA. : 10240 -10245 .
Honey, C. J., Thivierge, J. P., Sporns, O. (2010) Can structure predict function in the human brain? Neuroimage 52, 766–776.
Sporns O. , 'Can structure predict function in the human brain? ' (2010 ) 52 Neuroimage : 766 -776 .
Marois, R., Ivanoff, J. (2005) Capacity limits of information processing in the brain. Trends Cogn. Sci. 9, 296–305.
Ivanoff J. , 'Capacity limits of information processing in the brain ' (2005 ) 9 Trends Cogn. Sci. : 296 -305 .
Meyer, K., Damasio, A. (2009) Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 32, 376–382.
Damasio A. , 'Convergence and divergence in a neural architecture for recognition and memory ' (2009 ) 32 Trends Neurosci. : 376 -382 .
Miller, E. K., Cohen, J. D. (2001) An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202.
Cohen J. D. , 'An integrative theory of prefrontal cortex function ' (2001 ) 24 Annu. Rev. Neurosci. : 167 -202 .
Nepusz, T., Négyessy, L., Tusnády, G., Bazsó, F. (2009) Reconstructing cortical networks: case of directed graphs with high level of reciprocity. In: Bollobás, B., Kozma, R., Miklós D. (ed.) Handbook of Large-scale Random Networks. Springer, pp. 325–368.
Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F. (2008) Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 016107.
Bazsó F. , 'Fuzzy communities and the concept of bridgeness in complex networks ' (2008 ) 77 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. : 016107 -.
Négyessy, L., Nepusz, T., Kocsis, L., Bazsó, F. (2006) Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis. Eur. J. Neurosci. 23, 1919–1930.
Bazsó F. , 'Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis ' (2006 ) 23 Eur. J. Neurosci. : 1919 -1930 .
Négyessy, L., Nepusz, T., Zalányi, L., Bazsó, F. (2008) Convergence and divergence are mostly reciprocated properties of the connections in the network of cortical areas. Proc. Biol. Sci. 275, 2403–2410.
Bazsó F. , 'Convergence and divergence are mostly reciprocated properties of the connections in the network of cortical areas ' (2008 ) 275 Proc. Biol. Sci. : 2403 -2410 .
Sporns, O. (2002) Graph theory methods for the analysis of neural connectivity patterns. In: Kötter, R. (ed.) Neuroscience Databases. A Practical Guide. Klüwer, Boston, MA. pp 171–186.
Sporns O. , '', in Neuroscience Databases. A Practical Guide , (2002 ) -.
Sporns, O., Kötter, R. (2004) Motifs in brain networks. PLoS Biol. 2, e369.
Kötter R. , 'Motifs in brain networks ' (2004 ) 2 PLoS Biol. : e369 -.
Tombu, M. N., Asplund, C. L., Dux, P. E., Godwin, D., Martin, J. W., Marois, R. (2011) A unified attentional bottleneck in the human brain. Proc. Natl. Acad. Sci. USA. 108, 13426–13431.
Marois R. , 'A unified attentional bottleneck in the human brain ' (2011 ) 108 Proc. Natl. Acad. Sci. USA. : 13426 -13431 .
Sigman, M., Dehaene, S. (2008) Brain mechanisms of serial and parallel processing during dual-task performance. J. Neurosci. 28, 7585–7598.
Dehaene S. , 'Brain mechanisms of serial and parallel processing during dual-task performance ' (2008 ) 28 J. Neurosci. : 7585 -7598 .
Sporns, O. (2011) The non-random brain: efficiency, economy, and complex dynamics. Front Comput. Neurosci. 5, 5.
Sporns O. , 'The non-random brain: efficiency, economy, and complex dynamics ' (2011 ) 5 Front Comput. Neurosci. : 5 -.
Strogatz, S. H. (2001) Exploring complex networks. Nature 410, 268–276.
Strogatz S. H. , 'Exploring complex networks ' (2001 ) 410 Nature : 268 -276 .
Watts, D. J. (2004) The “New” Science of Networks. Annual Review of Sociology 30, 243–270.
Watts D. J. , 'The “New” Science of Networks ' (2004 ) 30 Annual Review of Sociology : 243 -270 .
Wood, J. N., Grafman, J. (2003) Human prefrontal cortex: processing and representational perspectives. Nat. Rev. Neurosci. 4, 139–147.
Grafman J. , 'Human prefrontal cortex: processing and representational perspectives ' (2003 ) 4 Nat. Rev. Neurosci. : 139 -147 .
Yan, C., He, Y. (2011) Driving and driven architectures of directed small-world human brain functional networks. PLoS One. 6, e23460.
He Y. , 'Driving and driven architectures of directed small-world human brain functional networks ' (2011 ) 6 PLoS One. : e23460 -.
Zylberberg, A., Fernández Slezak, D., Roelfsema, P. R., Dehaene, S., Sigman, M. (2010) The brain’s router: a cortical network model of serial processing in the primate brain. PLoS Comput. Biol. 6, e1000765.
Sigman M. , 'The brain’s router: a cortical network model of serial processing in the primate brain ' (2010 ) 6 PLoS Comput. Biol. : e1000765 -.