Authors:
Roderik Fiala Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic

Search for other papers by Roderik Fiala in
Current site
Google Scholar
PubMed
Close
,
Vladimír Repka Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic

Search for other papers by Vladimír Repka in
Current site
Google Scholar
PubMed
Close
,
Milada Čiamporová Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic

Search for other papers by Milada Čiamporová in
Current site
Google Scholar
PubMed
Close
,
Michal Martinka Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
Comenius University, Mlynská dolina B-2, SK-84215 Bratislava, Slovak Republic

Search for other papers by Michal Martinka in
Current site
Google Scholar
PubMed
Close
, and
Ján Pavlovkin Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic

Search for other papers by Ján Pavlovkin in
Current site
Google Scholar
PubMed
Close
Restricted access

Effects of CdCl2, NiCl2 or both on superoxide production, viability and membrane potential (EM) of root cells in meristematic (MZ) and differentiation (DZ) zones of two maize cultivars (cv. Premia and cv. Blitz) were studied. Plants were supplied with 10 and 100 μM concentrations of heavy metals (HM). The responses in the studied parameters to HM were concentration- and time-dependent, and were found only in the cells of MZ. The treatment of roots with Cd-stimulated massive superoxide production, although to different extent depending on the cultivar, root zone, and metal concentration. The stimulating effect of Ni on oxidative burst in Cd-treated maize roots was related to an increased Cd-induced superoxide production. The cell death appeared between 24 and 48 h and between 12 and 24 h of the 10 μM and 100 μM metal treatments, respectively. This was in accordance with Cd-induced ROS (superoxide) production and the EM decline in the corresponding time periods. Cell viability, EM changes and partially superoxide production indicate that the impact of the metals on the studied parameters declined in the order Cd+Ni > Cd > Ni and that cv. Blitz tends to respond more sensitively than cv. Premia.

  • 1.

    Ahmad, M. S., Ashraf, M. (2011) Essential roles and hazardous effects of nickel in plants. Rev. Environ. Contam. Toxicol. 214, 125167.

    • Search Google Scholar
    • Export Citation
  • 2.

    Aidid, S. B., Okamoto, H. (1992) Effects of lead, cadmium and zinc on the electric membrane potential at the xylem/symplast interface and cell elongation of Impatiens balsamina. Environ. Exp. Bot.219, 439448.

    • Search Google Scholar
    • Export Citation
  • 3.

    Artiushenko, T., Syschykov, D., Gryshko, V., Čiamporová, M., Fiala, R., Repka, V., Martinka, M., Pavlovkin, J. (2014) Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel. Biologia 69, 11421147.

    • Search Google Scholar
    • Export Citation
  • 4.

    Benavides, M. P., Gallego, S. M., Tomaro, M. L. (2005) Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 2134.

  • 5.

    Benov, L. (2001) How superoxide radical damages the cell. Protoplasma 217, 33136.

  • 6.

    Chen, C., Huang, D., Liu, J. (2009) Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean 37, 304313.

    • Search Google Scholar
    • Export Citation
  • 7.

    Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Breusegem, F. (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sc. 57, 779785.

    • Search Google Scholar
    • Export Citation
  • 8.

    Demiral, T., Turkan, I. (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53, 247257.

    • Search Google Scholar
    • Export Citation
  • 9.

    Fiala, R., Luxová, M., Čiamporová, M., Repka, V., Martinka, M., Pavlovkin, J. (2015) Dissimilar responses of membrane potential (EM), permeability properties and respiration to cadmium and nickel in maize root cells. Cer. Res. Com. 43, 5260.

    • Search Google Scholar
    • Export Citation
  • 10.

    Freeman, J. L., Persans, M. W., Nieman, K., Albrecht, C., Peer, W., Ingrid J., Pickering, I. J., Salt, D. E. (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16, 21762191.

    • Search Google Scholar
    • Export Citation
  • 11.

    Gajewska, E., Skłodowska, M. (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. BioMetals 20, 2736.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gapper, C., Dolan, L. (2006) Control of plant development by reactive oxygen species. Plant Physiol. 141, 341345.

  • 13.

    Garnier, L., Simon-Plas, F., Tuleau, P., Agnel, J.-P., Blein, J.-P., Ranjeva, R., Montillet, J.-L. (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ. 29, 19561969.

    • Search Google Scholar
    • Export Citation
  • 14.

    Gerendás, J., Polacco, J. C., Freyermuth, S. K., Sattelmacher, B. (1999) Significance of nickel for plant growth and metabolism. J. Plant Nutr. Soil Sc. 162, 241256.

    • Search Google Scholar
    • Export Citation
  • 15.

    Gill, S. S., Tuteja, N. (2011) Cadmium stress tolerance in crop plants. Plant Signaling Behav. 6, 215222.

  • 16.

    Gussarson, M., Asp, H., Adalsteinsson, S., Jensén, P. (1996) Enhancement of Cd effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoxinine (BSO). J. Exp. Bot. 47, 211215.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hernandez, L. E., Cook, D. T. (1997) Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J. Exp. Bot. 48, 13751381.

    • Search Google Scholar
    • Export Citation
  • 18.

    Irfana, M., Ahmada, A., Hayata, S. (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J. Biol. Sc. 21, 125131.

    • Search Google Scholar
    • Export Citation
  • 19.

    L’Huillier, L., ďAuzac, J., Durand, M., Michaud-Ferié, N. (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Can. J. Bot. 74, 14571554.

    • Search Google Scholar
    • Export Citation
  • 20.

    Liptáková, L., Bočová, B., Huttová, J., Mistrík, I., Tamás, L. (2012) Superoxide production induced by short-term exposure of barley roots to cadmium, auxin, alloxan and sodium dodecyl sulfate. PlantCell Report 31, 21892197.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kurtyka, R., Burdach, Z., Karcz, W. (2011) Effect of cadmium and lead on the membrane potential and photoelectric reaction of Nitellopsis obtusa cells. Gen. Physiol. Biophys. 30, 5258.

    • Search Google Scholar
    • Export Citation
  • 22.

    Llamas, A., Ullrich, C. I., Sanz, A. (2000) Cd2+ effects on transmembrane electrical potential, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and Soil 219, 2128.

    • Search Google Scholar
    • Export Citation
  • 23.

    Llamas, A., Ullrich, C. I., Sanz, A. (2008) Ni2+ toxicity in rice: Effect on membrane functionality and plant water content. Plant Physiol. Biochem. 46, 905910.

    • Search Google Scholar
    • Export Citation
  • 24.

    Moya, J. L., Ros, R., Picazo, I. (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynthesis Res. 36, 7580.

    • Search Google Scholar
    • Export Citation
  • 25.

    Oh, D., Lee, S. Y., Bressan, R. A., Yun, D., Bohnert, H. J. (2010) Intracellular consequences of SOS1 deficiency during salt stress. J. Exp. Bot. 61, 12051213.

    • Search Google Scholar
    • Export Citation
  • 26.

    Paradiso, A., Berardino, R., de Pinto, M. C., di Toppi, L. S., Storelli, M. M., Tommasi, F., De Gara, L. (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic response induced by cadmium in durum wheat plants. Plant Cell Physiol. 49, 362374.

    • Search Google Scholar
    • Export Citation
  • 27.

    Pavlovkin, J., Luxová, M., Mistríková, I., Mistrík, I. (2006) Short-and long-term effects of cadmium on transmembrane electric potential (Em) in maize roots. Biologia 61, 109114.

    • Search Google Scholar
    • Export Citation
  • 28.

    Rodríguez-Serrano, M., Romero-Puertas, M. C., Pazmiňo, D. M., Testillano, P. S., Risueňo, M. C., del Rio, L. A., Sandalio, L. M. (2006) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150, 229243.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ros, R., Morales, A., Segura, J., Picazo, I. (1992) In vivo and in vitro effects of nickel and cadmium on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sc. 83, 16.

    • Search Google Scholar
    • Export Citation
  • 30.

    Sanz, A., Llamas, A., Ullrich, C. I. (2009) Distinctive effects of Cd and Ni on membrane functionality. Plant Signal. Behav. 4, 980982.

    • Search Google Scholar
    • Export Citation
  • 31.

    Schützendübel, A., Polle, A. (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 13511365.

    • Search Google Scholar
    • Export Citation
  • 32.

    Sharma, S. S., Dietz, K. J. (2009) The relationship between metal toxicity and molecular redox imbalance. Trends Plant Sc. 14, 4350.

    • Search Google Scholar
    • Export Citation
  • 33.

    Smeets, K., Ruytinx, J., Semane, B. (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ. Exp. Bot. 63, 18.

    • Search Google Scholar
    • Export Citation
  • 34.

    Tran, T. A., Popova, L. P. (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turkish J. Bot. 37, 113.

    • Search Google Scholar
    • Export Citation
  • 35.

    Yakimova, E. T., Kapchina-Toteva, V. M., Laarhoven, L.-J., Harren, F. M., Woltering, E. J. (2006) Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol. Biochem. 44, 581589.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)