Authors:
Gábor Feigl University of Szeged, Szeged, Hungary

Search for other papers by Gábor Feigl in
Current site
Google Scholar
PubMed
Close
,
Devanand Kumar Assam University, Silchar-788 011, Assam, India

Search for other papers by Devanand Kumar in
Current site
Google Scholar
PubMed
Close
,
Nóra Lehotai University of Szeged, Szeged, Hungary

Search for other papers by Nóra Lehotai in
Current site
Google Scholar
PubMed
Close
,
Andrea Pető University of Szeged, Szeged, Hungary

Search for other papers by Andrea Pető in
Current site
Google Scholar
PubMed
Close
,
Árpád Molnár University of Szeged, Szeged, Hungary

Search for other papers by Árpád Molnár in
Current site
Google Scholar
PubMed
Close
,
Éva Rácz University of Szeged, Szeged, Hungary

Search for other papers by Éva Rácz in
Current site
Google Scholar
PubMed
Close
,
Attila Ördög University of Szeged, Szeged, Hungary

Search for other papers by Attila Ördög in
Current site
Google Scholar
PubMed
Close
,
László Erdei University of Szeged, Szeged, Hungary

Search for other papers by László Erdei in
Current site
Google Scholar
PubMed
Close
,
Zsuzsanna Kolbert University of Szeged, Szeged, Hungary

Search for other papers by Zsuzsanna Kolbert in
Current site
Google Scholar
PubMed
Close
, and
Gábor Laskay University of Szeged, Szeged, Hungary

Search for other papers by Gábor Laskay in
Current site
Google Scholar
PubMed
Close
Restricted access

Hydroponic experiments were conducted to compare the effects of excess copper (Cu) on growth and photosynthesis in young Indian mustard (Brassica juncea) and oilseed rape (Brassica napus). We compared the effects of excess Cu on the two Brassica species at different physiological levels from antioxidant levels to photosynthetic activity. Nine-day-old plants were treated with Cu (10, 25 and 50 μM CuSO4) for 7 and 14 days. Both species took up Cu from the external solution to a similar degree but showed slight root-to-shoot translocation. Furthermore, after seven days of treatment, excess Cu significantly decreased other microelement content, such as iron (Fe) and manganese (Mn), especially in the shoots of B. napus. As a consequence, the leaves of young Brassica napus plants showed decreased concentrations of photosynthetic pigments and more intense growth inhibition; however, accumulation of highly reactive oxygen species (hROS) were not detected. After 14 days of Cu exposure the reduction of Fe and Mn contents and shoot growth proved to be comparable in the two species. Moreover, a significant Cu-induced hROS accumulation was observed in both Brassica species. The diminution in pigment contents and photosynthetic efficiency were more pronounced in B. napus during prolonged Cu exposure. Based on all the parameters, B. juncea appears to be more resistant to excess Cu than B. napus, rendering it a species with higher potential for phytoremediation.

  • 1.

    Ahmad, M. S. A., Ashraf, M., Tabassam, Q., Hussain, M., Firdous H. (2011) Lead (Pb)-induced regulation of growth, photosynthesis and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biol. Trace Elem. Res. 144, 12291239.

    • Search Google Scholar
    • Export Citation
  • 2.

    Arshad, M., Murtaza, G., Asada, K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391396.

    • Search Google Scholar
    • Export Citation
  • 3.

    Babu, T. S., Marder, J. B., Tripuranthakam, S., Dixon, D. G., Greenberg, B. M. (2001) Synergistic effects of a photooxidized polycyclic aromatic hydrocarbon and copper on photosynthesis and plant growth: evidence that in vivo formation of reactive oxygen species is a mechanism of copper toxicity. Environ. Toxicol. Chem. 20, 13511358.

    • Search Google Scholar
    • Export Citation
  • 4.

    Boswell, C., Sharma, N. C., Sahi, S. V. (2002) Copper tolerance and accumulation potential of Chlamidomonas reinhardtii. Bull. Environ. Contam. Toxicol. 69, 546553.

    • Search Google Scholar
    • Export Citation
  • 5.

    Böddi, B., Oravecz, A. R., Lehoczki, É. (1995) Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynth 31, 411420.

    • Search Google Scholar
    • Export Citation
  • 6.

    Burkhead, J. L., Reynolds, K. A. G., Abdel-Ghany, S. E. (2009) Copper homeostasis. New Phytol. 182, 799816.

  • 7.

    Dhindsa, R. S., Plumb-Dhindsa, P., Thorpe, T. A. (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93101.

    • Search Google Scholar
    • Export Citation
  • 8.

    Dixon, G. R. (2007) Vegetables Brassicas and related Crucifers. Crop production science in horticulture series: 14. Bibbles Ltd, King’s Lynn.

    • Search Google Scholar
    • Export Citation
  • 9.

    Drążkiewicz, M., Skórzyńska-Polit, E., Krupa, Z. (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals 17, 379387.

    • Search Google Scholar
    • Export Citation
  • 10.

    Dushenkov, V., Nanda Kumar, P. B. A., Motto, H., Raskin, I. (1995) Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 29, 12391245.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ebbs, S. D., Kochian, L. V. (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J. Environ. Qual. 26, 776781.

    • Search Google Scholar
    • Export Citation
  • 12.

    Feigl, G., Kumar, D., Lehotai, N., Tugyi, N. Molnár, A., Ördög, A., Szepesi, A., Gémes, K., Laskay, G., Erdei, L., Kolbert, Z. (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotox.Environ. Safety 94, 179189.

    • Search Google Scholar
    • Export Citation
  • 13.

    Fellet, G., Marchiol, L., Zerbi, G. (2013) Potential for metal phytoextraction of Brassica oilseed species. In: Naser A. Anjum et al. (eds) Phytotechologies: Remediation of Environmental Contaminants. CRC Press, Taylor & Francis Group, Boca Raton, pp. 180201.

    • Search Google Scholar
    • Export Citation
  • 14.

    Halliwell, B., Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radical, transition metals and disease. Biochem. J. 219, 114.

  • 15.

    Jegerschöld, C., Arellano, J. B., Schröder, W. P., van Kan, P. J., Barón, M., Styring, S. (1995) Copper(II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy. Biochem. 34, 1274712754.

    • Search Google Scholar
    • Export Citation
  • 16.

    Jegerschöld, C., MacMillan, F., Lubitz, W., Rutherford, A. W. (1999) Effects of copper and zinc ions on photosystem II studied by EPR spectroscopy. Biochem. 38, 1243912445.

    • Search Google Scholar
    • Export Citation
  • 17.

    Kolbert, Zs. , Pető, A., Lehotai, N., Feigl, G., Ördög, A., Erdei, L. (2012) In vivo and in vitro studies on fluorophore-specificity. Acta Biol. Szeged, 56, 3741.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kumar, P. B. A. N., Dushenkov, V., Motto, H., Raskin, I. (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Tech. 29, 12321238.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kumar, S., Andy, A. (2012) Health promoting bioactive phytochemicals from Brassica. Int. Food Res. J. 19, 5966.

  • 20.

    Kurepa, J., Hérouart, D., van Montagu, M., Inzé, D. (1997) Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol. 38, 463470.

    • Search Google Scholar
    • Export Citation
  • 21.

    Küpper, H., Setlik, I., Spiller, M., Küpper, F., Prasil, O. (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J. Phycol. 38, 429441.

    • Search Google Scholar
    • Export Citation
  • 22.

    Lahive, E., O’Halloran, J., Jansen, M. A. K. (2012) Frond development gradients are a determinant of the impact of zinc on photosynthesis in three species of Lemnaceae. Aquat. Bot. 101, 5563.

    • Search Google Scholar
    • Export Citation
  • 23.

    Law, M. Y., Charles, S. A., Halliwell, B. (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem. J. 210, 899903.

    • Search Google Scholar
    • Export Citation
  • 24.

    Lequeux, H., Hermans, C., Lutts, S., Verbruggen, N. (2010) Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineralprofile. Plant Physiol. Biochem. 48, 673682.

    • Search Google Scholar
    • Export Citation
  • 25.

    Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350382.

  • 26.

    Lidon, F. C., Henriques, F. S. (1993) Effects of copper toxicity on growth and the uptake and translocation of metals in rice plants. J. Plant Nutr. 16, 14491464.

    • Search Google Scholar
    • Export Citation
  • 27.

    Liu, J., Xiong, Z. T., Li, T. Y., Huang H. (2004) Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites. Environ Exp. Bot. 52, 4351.

    • Search Google Scholar
    • Export Citation
  • 28.

    Lombardi, L., Sebastiani, L. (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro-grown plants. Plant Sci. 168, 797802.

    • Search Google Scholar
    • Export Citation
  • 29.

    Luna, C. M., González, C. A., Trippi, V. S. (1994) Oxidative damage caused by excess of copper in oat leaves. Plant Cell Physiol. 35, 1115.

    • Search Google Scholar
    • Export Citation
  • 30.

    Maksymiec, W. (1997) Effect of copper on cellular processes in higher plants. Photosynth 34, 321342.

  • 31.

    Marchiol, L., Sacco, P., Assolari, S., Zerbi, G. (2004) Reclamation of polluted soil: Phytoremediation potential of crop-related Brassica species. Water, Air, and Soil Pollution 158, 345356.

    • Search Google Scholar
    • Export Citation
  • 32.

    Mattina, M. J. I., Lannucci-Berger, W., Musante, C., White, J. C. (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ. Pollut. 124, 375378.

    • Search Google Scholar
    • Export Citation
  • 33.

    Møller, I. M., Jensen, P. E., Hansson, A. (2007) Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459481.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867880.

    • Search Google Scholar
    • Export Citation
  • 35.

    Ouzounidou, G., Lannoye, R., Karataglis, S. (1993) Photoacoustic measurements of photosynthetic activities in intact leaves under copper stress. Plant Sci. 89, 221226.

    • Search Google Scholar
    • Export Citation
  • 36.

    Pätsikkä, E., Kairavuo, M., Šeršen, F., Tyystjärvi, E. A. E. (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol. 129, 13591367.

    • Search Google Scholar
    • Export Citation
  • 37.

    Roháček, K., Soukupová, J., Barták, M. (2008) Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In: Benoît Schoefs (ed.) Plant Cell Compartments – SelectedTopics. Research Signpost, Fort P.O., Trivandrum-695 023, Kerala, pp. 41104.

    • Search Google Scholar
    • Export Citation
  • 38.

    Romero-Puertas, M. C., Palma, J. M., Gómez, M., Del Rió, L. A., Sandalio, L. M. (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ. 25, 677686.

    • Search Google Scholar
    • Export Citation
  • 39.

    Russo, M., Sgherri, C., Izzo, R., Navari-Izzo, F. (2008) Brassica napus subjected to copper excess: Phospholipases C and D and glutathione system in signalling. Environ. Exp. Bot. 62, 238246.

    • Search Google Scholar
    • Export Citation
  • 40.

    Salt, D. E., Prince, R. C., Pickering, I. J., Raskin, I. (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109, 14271433.

    • Search Google Scholar
    • Export Citation
  • 41.

    Sharma, S. S., Dietz, K. J. (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14, 4350.

    • Search Google Scholar
    • Export Citation
  • 42.

    Shioi, Y., Tamai, H., Sasa, T. (1978) Effects of copper on photosynthetic electron transport systems in spinach chloroplasts. Plant Cell Physiol. 19, 203209.

    • Search Google Scholar
    • Export Citation
  • 43.

    Singh, S., Singh, S., Ramachandran, V., Eapen, S. (2010) Copper tolerance and response of antioxidative enzymes in axenically grown Brassica juncea (L.) plants. Ecotoxicol. Environ. Safety 73, 19751981.

    • Search Google Scholar
    • Export Citation
  • 44.

    Taylor, G. J., Foy, C. D. (1985) Differential uptake and toxicity of ionic and chelated copper in Triticum aestivum. Can. J. Bot. 63, 12711275.

    • Search Google Scholar
    • Export Citation
  • 45.

    Upadhyaya, A., Sankhla, D., Davis, T. D., Sankhla, N., Smith, B. N. (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J. Plant Physiol. 121, 453461.

    • Search Google Scholar
    • Export Citation
  • 46.

    Zhao, F. J., Lombi, E., McGrath, S. P. (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249, 3743.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)