View More View Less
  • 1 “Alexandru Ioan Cuza” University of Iaşi, Iaşi, Romania
  • | 2 NIRDBS-Institute of Biological Research Iaşi, Iaşi, Romania
Restricted access

The application of commercial rhizobial inoculants to legume crops is proving to be an alternative to synthetic fertilizer use. The challenge for sustainable agriculture resides in the compatibility between crop, inoculants and environmental conditions. The evaluation of symbiotic efficiency and genetic diversity of indigenous rhizobial strains could lead to the development of better inoculants and increased crop production. The genetic variability of 32 wild indigenous rhizobial isolates was assessed by RAPD (Random Amplified Polymorphic DNA). The strains were isolated from red clover (Trifolium pratense L.) nodules from two distinct geographical regions of Northern and Eastern Romania. Three decamer primers were used to resolve the phylogenetic relationships between the investigated isolates. Cluster analysis revealed a high diversity; most strains clustered together based on their geographical location.

  • 1.

    Castro-Sowinski, S., Herschkovitz, Y., Okon, Y., Jurkevitch, E. (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol.Lett. 276, 111.

    • Search Google Scholar
    • Export Citation
  • 2.

    De Meyer, S. E., Van Hoorde, K., Vekeman, B., Braeckman, T., Willems, A. (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol.Biochem. 43, 23842396.

    • Search Google Scholar
    • Export Citation
  • 3.

    De Oliveira, I. A., Vasconcellos, M. J., Seldin, L., Paiva, E., Vargas, M. A., de Sá, N. M. H. (2000) Random amplified polymorphic DNA analysis of effective Rhizobium sp. associated with beans cultivated in brazilian cerrado soils. Braz. J. Microbiol. 31, 3944.

    • Search Google Scholar
    • Export Citation
  • 4.

    Durán, D., Rey, L., Sánchez-Cañizares, C., Navarro, A., Imperial, J., Ruiz-Argueso, T. (2013) Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkalinelimed soils within its area of distribution in Eastern Spain. Syst. Appl. Microbiol. 36, 128136.

    • Search Google Scholar
    • Export Citation
  • 5.

    Giongo, A., Ambrosini, A., Vargas, L. K., Freire, J. R. J., Bodanese-Zanettini, M. H., Passaglia, L. M. P. (2008) Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycinemax (L.) Merrill] isolated from South Brazilian fields. Appl. Soil Ecol. 38, 261269.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hampl, V., Pavlícek, A., Flegr, J. (2001) Construction and bootstrap analysis of DNA fngerprintingbased phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int. J. Syst. Evol. Micr. 51, 731735.

    • Search Google Scholar
    • Export Citation
  • 7.

    Herridge, D. F., Peoples, M. B., Boddey, R. M. (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 118.

    • Search Google Scholar
    • Export Citation
  • 8.

    Iqbal, M. A., Khalid, M., Shahzad, S. M., Ahmad, M., Soleman, N., Akhtar, N. (2012) Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.). Chil. J. Agr. Res. 72, 104110.

    • Search Google Scholar
    • Export Citation
  • 9.

    Joseph, B., Ranjan Patra, R., Lawrence, R. (2012) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int. J. Plant Prod. 1, 141152.

    • Search Google Scholar
    • Export Citation
  • 10.

    Karthikeyan, K. A. M., Sasireka, G., Suresh, P. (2013) Genetic diversity of Rhizobium leguminosarum isolates as revealed by Random Amplified polymorphic DNA analysis. J. Biosci. Res. 4, 1520.

    • Search Google Scholar
    • Export Citation
  • 11.

    Lindström, K., Murwira, M., Willems, A., Altier, N. (2010) The biodiversity of beneficial microbehost mutualism: the case of rhizobia. Res. Microbiol. 161, 453463.

    • Search Google Scholar
    • Export Citation
  • 12.

    Moschetti, G., Peluso, A., Protopapa, A., Anastasio, M., Pepe, O., Defez, R. (2005) Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP–16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Sys. Appl. Microbiol. 28, 619631.

    • Search Google Scholar
    • Export Citation
  • 13.

    Op den Camp, R. H., Polone, E., Fedorova, E., Roelofsen, W., Squartini, A., Op den Camp, H. J., Bisseling, T., Geurts, R. (2012) Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol. Plant Microbe In. 25, 954963.

    • Search Google Scholar
    • Export Citation
  • 14.

    Paffetti, D., Scotti, C., Gnocchi, S., Fancelli, S., Bazzicalupo, M. (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl. Environ.Microb. 62, 22792285.

    • Search Google Scholar
    • Export Citation
  • 15.

    Pavel, A. B., Vasile, C. I. (2012) PyElph — a software tool for gel images analysis and phylogenetics. BMC Bioinformatics 13, 9.

  • 16.

    Pinto, P. P., Paiva, E., Purcino, H., Passos, R. V. M., de Sá, N. M. H. (2004) Characterization of rhizobia that nodulate Arachis pintoi by RAPD analysis. Braz. J. Microbiol. 35, 219223.

    • Search Google Scholar
    • Export Citation
  • 17.

    Rajasundari, K., Ilamurugu, K., Logeshwaran, P. (2009) Genetic diversity in rhizobial isolates determined by RAPDs. Afr. J. Biotechnol. 8, 26772681.

    • Search Google Scholar
    • Export Citation
  • 18.

    Ruiz-Díez, B., Quiñones, M. A., Fajardo, S., López, M. A., Higueras, P., Fernández-Pascual, M. (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl. Microbiol. Biotechnol. 96, 543554.

    • Search Google Scholar
    • Export Citation
  • 19.

    Schluter, P. M., Harris, S. A. (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Notes 6, 569572.

    • Search Google Scholar
    • Export Citation
  • 20.

    Sikora, S., Redžepović, S., Pejić, I., Kozumplik, V. (1997) Genetic diversity of Bradyrhizobium japonicum field population revealed by RAPD fingerprinting. J. Appl. Microbiol. 82, 527531.

    • Search Google Scholar
    • Export Citation
  • 21.

    Sokal, R. R., Michener, C. D. (1958) A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 28, 14091438.

    • Search Google Scholar
    • Export Citation
  • 22.

    Suominen, L., Jussila, M. M., Mäkeläinen, K., Romantschuk, M., Lindström, K. (2000) Evaluation of the Galega-Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environ.Pollut. 107, 239244.

    • Search Google Scholar
    • Export Citation
  • 23.

    Torres, A. R., Cursino, L., Muro-Abad, J. I., Gomes, E. A., de Araújo, E. F., Hungria, M., Cassini, S. T. A. (2009) Genetic diversity of indigenous common bean (Phaseolus vulgaris L.) rhizobia from the state of Minas Gerais, Brazil. Braz. J. Microbiol. 40, 852856.

    • Search Google Scholar
    • Export Citation
  • 24.

    Vincent, J. M. (1970) A Manual for the Practical Study of Root-nodule Bacteria. IBP Handbook no. 15. Blackwell Scientific Publications, Oxford, England.

    • Search Google Scholar
    • Export Citation
  • 25.

    Wani, P. A., Khan, M. S. (2012) Bioremediation of lead by a plant growth promoting Rhizobium species RL9. Bacteriol. J. 2, 6678.

  • 26.

    Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 65316535.

    • Search Google Scholar
    • Export Citation
  • 27.

    Young, C. C., Cheng, K. T. (1998) Genetic diversity of fast-and slow-growing soybean rhizobia determined by random amplified polymorphic DNA analysis. Biol. Fert. Soils 26, 254256.

    • Search Google Scholar
    • Export Citation

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)


Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • The ISI Alerting Services
  • Zoological Abstracts


Acta Biologica Hungarica
Language English
Year of
changed title
per Year
per Year
Founder Magyar Tudományos Akadémia
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)