Authors:
Edit Horváth Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary

Search for other papers by Edit Horváth in
Current site
Google Scholar
PubMed
Close
,
Krisztina Bela Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary

Search for other papers by Krisztina Bela in
Current site
Google Scholar
PubMed
Close
,
Csaba Papdi Biological Research Centre of HAS, Temesvári krt. 62, H-6726 Szeged, Hungary

Search for other papers by Csaba Papdi in
Current site
Google Scholar
PubMed
Close
,
Ágnes Gallé Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary

Search for other papers by Ágnes Gallé in
Current site
Google Scholar
PubMed
Close
,
László Szabados Biological Research Centre of HAS, Temesvári krt. 62, H-6726 Szeged, Hungary

Search for other papers by László Szabados in
Current site
Google Scholar
PubMed
Close
,
Irma Tari Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary

Search for other papers by Irma Tari in
Current site
Google Scholar
PubMed
Close
, and
Jolán Csiszár Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary

Search for other papers by Jolán Csiszár in
Current site
Google Scholar
PubMed
Close
Restricted access

Arabidopsis thaliana contains 54 soluble glutathione transferases (GSTs, EC 2.5.1.18), which are thought to play major roles in oxidative stress responses, but little is known about the function of individual isoenzymes. The role of AtGST phi 9 (GSTF9) in the salt- and salicylic acid response was investigated using 2-week-old Atgstf9 and wild type (Wt) plants. Atgstf9 mutants accumulated more ascorbic acid (AsA) and glutathione (GSH) and had decreased glutathione peroxidase (GPOX) activity under control conditions. Treatment of 2-week-old seedlings with 10−7 M salicylic acid (SA) for 48 h resulted in elevated H2O2 level and enhanced GST activity in Atgstf9 plants, 10−5 M SA treatment enhanced the malondialdehyde and dehydroascorbate contents compared to Wt. 50 and 150 mM NaCl increased the GST activity, AsA and GSH accumulation in Atgstf9 seedlings more pronounced than in Wt plants. We found that the Atgstf9 mutants had altered redox homeostasis under control and stress conditions, in which elevated AsA and GSH levels and modified GST and GPOX activities may play significant role. The half-cell potential values calculated from the concentration of GSH and GSSG indicate that this GST isoenzyme has an important role in the salt stress response.

  • 1.

    Csiszár, J., Szabó, M., Erdei, L., Márton, L., Horváth, F., Tari, I. (2004) Auxin autotrophic tobacco callus tissues resist oxidative stress: the importance of glutathione S-transferase and glutathione peroxidase activities in auxin heterotrophic and autotrophic calli. J. Plant Physiol. 161, 691699.

    • Search Google Scholar
    • Export Citation
  • 2.

    De Tullio, M. C. (2010) Antioxidants and redox regulation: Changing notions in a changing world. Plant Physiol. Bioch. 48, 289291.

  • 3.

    Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., Fobert, P. R. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basis domain/leucine zipper transcription factor TGA1. Plant Cell 15, 21812191.

    • Search Google Scholar
    • Export Citation
  • 4.

    Dixon, D. P., Edwards, R. (2010) Glutathione transferases. Arabidopsis Book 8, e0131.

  • 5.

    Foyer, C. H., Noctor, G. (2005) Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses, Plant Cell 17, 18661875.

    • Search Google Scholar
    • Export Citation
  • 6.

    Foyer, C. H., Noctor, G. (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28, 10561071.

    • Search Google Scholar
    • Export Citation
  • 7.

    Foyer, C. H., Noctor, G. (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 218.

  • 8.

    Gémes, K., Poór, P., Horváth, E., Kolbert, Z., Szopkó, D., Szepesi, Á., Tari, I. (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol. Plantarum 142, 179192.

    • Search Google Scholar
    • Export Citation
  • 9.

    Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H., Chang-Xing, Z., Hong-Bo, S., Panneerselvam, R. (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 31, 427436.

    • Search Google Scholar
    • Export Citation
  • 10.

    Kocsy, G., Tari, I., Vanková, R., Zechmann, B., Gulyás, Z., Poór, P., Galiba, G. (2013) Redox control of plant growth and development. Plant Sci. 211, 7791.

    • Search Google Scholar
    • Export Citation
  • 11.

    Labrou, N. E., Papageorgiou, A. C., Pavli, O., Flemetakis, E. (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr. Opin. Biotech. 32, 186194.

    • Search Google Scholar
    • Export Citation
  • 12.

    Lehotai, N., Pető, A., Bajkán, Sz., Erdei, L., Tari, I., Kolbert, Zs. (2011) In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol. Plant. 33, 21992207.

    • Search Google Scholar
    • Export Citation
  • 13.

    Marrs, K. A. (1996) The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Phys. 47, 127158.

  • 14.

    Meyer, A. J. (2008) The integration of glutathione homeostasis and redox signaling. J. Plant Physiol. 165, 13901403.

  • 15.

    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405410.

  • 16.

    Mou, Z., Fan, W., Dong, X. (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 27, 935944.

    • Search Google Scholar
    • Export Citation
  • 17.

    Munns, R., Tester, M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651681.

  • 18.

    Papdi, C., Ábrahám, E., Joseph, M. P., Popescu, C., Koncz, C., Szabados, L. (2008) Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol. 147, 528542.

    • Search Google Scholar
    • Export Citation
  • 19.

    Pál, M., Szalai, G., Kovács, V., Gondor, O. K., Janda, T. (2013) Salicylic acid-mediated abiotic stress tolerance. In Hayat, S., Ahmad, A., Alyemeni, M. N. (eds) Salicylic Acid Springer, Netherlands, pp. 183247.

    • Search Google Scholar
    • Export Citation
  • 20.

    Potters, G., Horemans, N., Jansen, M. A. K. (2010) The cellular redox state in plant stress biology – A charging concept. Plant Physiol. Bioch. 48, 292300.

    • Search Google Scholar
    • Export Citation
  • 21.

    Sappl, P. G., Onate-Sanchez, L., Singh, K. B., Millar, A. H. (2004) Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol. Biol. 54, 205219.

    • Search Google Scholar
    • Export Citation
  • 22.

    Sappl, P. G., Carroll, A. J., Clifton, R., Lister, R., Whelan, J., Millar, A. H., Singh, K. B. (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J. 58, 5368.

    • Search Google Scholar
    • Export Citation
  • 23.

    Schafer, F. O., Buettner, G. R. (2001) Redox environment of the cell as viewed through the redox state of glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 11911212.

    • Search Google Scholar
    • Export Citation
  • 24.

    Soltész, A., Tímár, I., Vashegyi, I., Tóth, B., Kellős, T., Szalai, G., Vágújfalvi, A., Kocsy, G., Galiba, G. (2011) Redox changes during cold acclimation affect freezing tolerance but not the vegetative/reproductive transition of the shoot apex in wheat. Plant Biol. 13, 757766.

    • Search Google Scholar
    • Export Citation
  • 25.

    Szalai, G., Kellős, T., Galiba, G., Kocsy, G. (2009) Glutathione as an antioxidant and a regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul. 28, 6680.

    • Search Google Scholar
    • Export Citation
  • 26.

    Tari, I., Csiszár, J., Horváth, E., Poór, P., Takács, Z., Szepesi, Á. (2015) Alleviation of the adverse effect of salt stress in tomato by salicylic acid shows time- and organ-specific antioxidant response. Acta Biol. Cracov. Bot. 57, 110.

    • Search Google Scholar
    • Export Citation
  • 27.

    Tolin, S., Arrigoni, G., Trentin, A. R., Veljovic-Jovanovic, S., Pivato, M., Zechman, B., Masi, A. (2013) Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment. Proteomics 13, 20312045.

    • Search Google Scholar
    • Export Citation
  • 28.

    Wagner, U., Edwards, R., Dixon, D. P., Mauch, F. (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49, 515532.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)