Arabidopsis thaliana contains 54 soluble glutathione transferases (GSTs, EC 2.5.1.18), which are thought to play major roles in oxidative stress responses, but little is known about the function of individual isoenzymes. The role of AtGST phi 9 (GSTF9) in the salt- and salicylic acid response was investigated using 2-week-old Atgstf9 and wild type (Wt) plants. Atgstf9 mutants accumulated more ascorbic acid (AsA) and glutathione (GSH) and had decreased glutathione peroxidase (GPOX) activity under control conditions. Treatment of 2-week-old seedlings with 10−7 M salicylic acid (SA) for 48 h resulted in elevated H2O2 level and enhanced GST activity in Atgstf9 plants, 10−5 M SA treatment enhanced the malondialdehyde and dehydroascorbate contents compared to Wt. 50 and 150 mM NaCl increased the GST activity, AsA and GSH accumulation in Atgstf9 seedlings more pronounced than in Wt plants. We found that the Atgstf9 mutants had altered redox homeostasis under control and stress conditions, in which elevated AsA and GSH levels and modified GST and GPOX activities may play significant role. The half-cell potential values calculated from the concentration of GSH and GSSG indicate that this GST isoenzyme has an important role in the salt stress response.
Csiszár, J., Szabó, M., Erdei, L., Márton, L., Horváth, F., Tari, I. (2004) Auxin autotrophic tobacco callus tissues resist oxidative stress: the importance of glutathione S-transferase and glutathione peroxidase activities in auxin heterotrophic and autotrophic calli. J. Plant Physiol. 161, 691–699.
De Tullio, M. C. (2010) Antioxidants and redox regulation: Changing notions in a changing world. Plant Physiol. Bioch. 48, 289–291.
Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., Fobert, P. R. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basis domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181–2191.
Dixon, D. P., Edwards, R. (2010) Glutathione transferases. Arabidopsis Book 8, e0131.
Foyer, C. H., Noctor, G. (2005) Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses, Plant Cell 17, 1866–1875.
Foyer, C. H., Noctor, G. (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28, 1056–1071.
Foyer, C. H., Noctor, G. (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2–18.
Gémes, K., Poór, P., Horváth, E., Kolbert, Z., Szopkó, D., Szepesi, Á., Tari, I. (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol. Plantarum 142, 179–192.
Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H., Chang-Xing, Z., Hong-Bo, S., Panneerselvam, R. (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 31, 427–436.
Kocsy, G., Tari, I., Vanková, R., Zechmann, B., Gulyás, Z., Poór, P., Galiba, G. (2013) Redox control of plant growth and development. Plant Sci. 211, 77–91.
Labrou, N. E., Papageorgiou, A. C., Pavli, O., Flemetakis, E. (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr. Opin. Biotech. 32, 186–194.
Lehotai, N., Pető, A., Bajkán, Sz., Erdei, L., Tari, I., Kolbert, Zs. (2011) In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol. Plant. 33, 2199–2207.
Marrs, K. A. (1996) The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Phys. 47, 127–158.
Meyer, A. J. (2008) The integration of glutathione homeostasis and redox signaling. J. Plant Physiol. 165, 1390–1403.
Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.
Mou, Z., Fan, W., Dong, X. (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 27, 935–944.
Munns, R., Tester, M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681.
Papdi, C., Ábrahám, E., Joseph, M. P., Popescu, C., Koncz, C., Szabados, L. (2008) Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol. 147, 528–542.
Pál, M., Szalai, G., Kovács, V., Gondor, O. K., Janda, T. (2013) Salicylic acid-mediated abiotic stress tolerance. In Hayat, S., Ahmad, A., Alyemeni, M. N. (eds) Salicylic Acid Springer, Netherlands, pp. 183–247.
Potters, G., Horemans, N., Jansen, M. A. K. (2010) The cellular redox state in plant stress biology – A charging concept. Plant Physiol. Bioch. 48, 292–300.
Sappl, P. G., Onate-Sanchez, L., Singh, K. B., Millar, A. H. (2004) Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol. Biol. 54, 205–219.
Sappl, P. G., Carroll, A. J., Clifton, R., Lister, R., Whelan, J., Millar, A. H., Singh, K. B. (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J. 58, 53–68.
Schafer, F. O., Buettner, G. R. (2001) Redox environment of the cell as viewed through the redox state of glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212.
Soltész, A., Tímár, I., Vashegyi, I., Tóth, B., Kellős, T., Szalai, G., Vágújfalvi, A., Kocsy, G., Galiba, G. (2011) Redox changes during cold acclimation affect freezing tolerance but not the vegetative/reproductive transition of the shoot apex in wheat. Plant Biol. 13, 757–766.
Szalai, G., Kellős, T., Galiba, G., Kocsy, G. (2009) Glutathione as an antioxidant and a regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul. 28, 66–80.
Tari, I., Csiszár, J., Horváth, E., Poór, P., Takács, Z., Szepesi, Á. (2015) Alleviation of the adverse effect of salt stress in tomato by salicylic acid shows time- and organ-specific antioxidant response. Acta Biol. Cracov. Bot. 57, 1–10.
Tolin, S., Arrigoni, G., Trentin, A. R., Veljovic-Jovanovic, S., Pivato, M., Zechman, B., Masi, A. (2013) Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment. Proteomics 13, 2031–2045.
Wagner, U., Edwards, R., Dixon, D. P., Mauch, F. (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49, 515–532.