Authors:
Mohamed A. K. Shaddad Faculty of Science, Assiut University, Assiut, 71515, Egypt

Search for other papers by Mohamed A. K. Shaddad in
Current site
Google Scholar
PubMed
Close
,
Gaber K. Abd El-Baki Faculty of Science, Minia University, El-Minia, 61519, Egypt

Search for other papers by Gaber K. Abd El-Baki in
Current site
Google Scholar
PubMed
Close
,
Mostafa Doaa Faculty of Science, Minia University, El-Minia, 61519, Egypt

Search for other papers by Mostafa Doaa in
Current site
Google Scholar
PubMed
Close
, and
Rafat Al-Shimaa Faculty of Science, Minia University, El-Minia, 61519, Egypt

Search for other papers by Rafat Al-Shimaa in
Current site
Google Scholar
PubMed
Close
Restricted access

Two broad bean cultivars (Vicia faba CV Nobaria3 and Vicia faba CV Sakha3) were obtained from Mallwi Agriculture Research Center, El Minia Governorate, Egypt. The seeds were divided into two groups, the first group soaked with distilled water, while the second group were soaked with 3 mM KNO3, respectively, for 4 hours. Seeds were sown and left to grow for 3 weeks then treated with different concentrations of NaCl (0.0, 40, 80, 120 and 160 mM) by top irrigation, then they left to grow further for 65 days from sowing. Plant samples were collected for some measurements: leaf area, plant height, root length, fresh and dry weight, photosynthetic pigments, carotenoids, soluble sugars, soluble proteins, total free amino acids, esterase enzyme, as well as MDA (malondialdehyde) content. Salinity reduced both fresh and dry weight in two broad bean cultivars, this reduction were more pronounced in Sakha3 than Nobaria3. Seed pre-soaking with KNO3 resulted in enhancement of fresh and dry weight production in both cultivars especially at 40 mM NaCl. Photosynthetic pigments were substantially affected by salt treatment while the carotenoids were increased, seed pre-soaking with KNO3 improved these components. The soluble sugars, amino acids as well as soluble proteins showed various responses with increasing salinity in the cultivars, seed pre-soaking with KNO3 has improved these parameters to some extent. The shoots of two cultivars exhibited significant accumulation of MDA, compared to roots exposed to the highest salinity levels. Pre-soaking seeds with KNO3 did not improve MDA in shoots but enhanced it in roots, however, in most cases still lower than the absolute control. The assessment of the esterase isozyme profiles on 7.5% native polyacrylamide gel revealed the presence of 13 isoforms in two faba bean plants in response to KNO3 pre-soaking and treatments with different concentrations of NaCl.

  • 1.

    Argerich, C. A., Bradford, K. J. (1989) The effects of priming and aging on seed vigour in tomato. J. Exp. Bot. 40, 599607.

  • 2.

    Ashraf, M., Foolad, M. R. (2005) Pre-sowing seed treatment – A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 88, 223265.

    • Search Google Scholar
    • Export Citation
  • 3.

    Azooz, M. (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int. J. Agric. and Biol. Engin. 11, 343350.

    • Search Google Scholar
    • Export Citation
  • 4.

    Badour, S. S. A. (1959) Analitisch–chemische Untersuchung des Kaliummangels bei Chlorella in Vergleich mit anderen Mangel-Zustanden. Ph.D. Dissertation, Göttingen.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bajehbaj, A. A. (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr. J. Biotech. 9, 17641770.

    • Search Google Scholar
    • Export Citation
  • 6.

    Bandehagh, A., Salekdeh, G. H., Toorchi, M. (2011) Comparative proteomic analysis of canola leaves under salinity stress’. Proteomics 11, 19651975.

    • Search Google Scholar
    • Export Citation
  • 7.

    Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., Dries, N., Maurel, C. (2005) Early effects of salinity on water transport in Arabidopsis roots: molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790805.

    • Search Google Scholar
    • Export Citation
  • 8.

    Bradford, K. J. (1986) Priming to improve germination under stress conditions. Hort. Sci. 21, 11051112.

  • 9.

    Chandler, P. M., Robertson, M. (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance’. Annu. Rev. Plant Physiol. Plant mol. Biol. 45, 113141.

    • Search Google Scholar
    • Export Citation
  • 10.

    Coppens, L., Dewitte, D. (1990) Esterase and peroxidase zymograms from barley (Hordeum vulgare L.) callus as a biochemical marker system of embryogenesis and organogenesis. Plant Science 67, 97105.

    • Search Google Scholar
    • Export Citation
  • 11.

    Cosgrove, D. J. (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol. 125, 131134.

  • 12.

    Cummins, I., Burnet, M., Edwards, R. (2001) Biochemical characterization of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiol. Plant. 113, 477485.

    • Search Google Scholar
    • Export Citation
  • 13.

    De Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A. (2003) Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Braz. J. Plant Physiol. 15, 113118.

    • Search Google Scholar
    • Export Citation
  • 14.

    Demir Kaya, M., Okcu, G., Atak, M., Cikili, Y., Kolsarici, O. (2006) Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus. annuus L.). J. Eur. Agron. 24, 291295.

    • Search Google Scholar
    • Export Citation
  • 15.

    Ebrahim, M. K. (2005) Amelioration of sucrose-metabolism and yield changes, in storage roots of NaCl-stressed sugar beet, by ascorbic acid. Agrochimica, XLІX (3–4), 93103.

    • Search Google Scholar
    • Export Citation
  • 16.

    Fales, F. W. (1951) The assimilation and degradation of carbohydrates by yeast cells. J. Biol. Chem. 193, 113124.

  • 17.

    FAO (2008) FAO Land and Plant Nutrition Management Service. http://www.fao.org/agl/agll/spush.

  • 18.

    Gadallah, M. A. (1999) Effects of proline and glycinebetaine on Vicia faba in response to salt stress. Biol. Plant 42, 249257.

  • 19.

    Gao, Y. P., Young, L., Bonham-Smith, P., Gusta, L. V. (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol. Biol. 40, 635644.

    • Search Google Scholar
    • Export Citation
  • 20.

    Gigova, L., Gacheva, G., Ivanova, N., Pilarski, P. (2012) Effects of temperature on synechocystis sp. r10 (cyanoprokaryota) at two irradiance levels. i. effect on growth, biochemical composition and defense enzyme activities. Gen. Plant Physiol. V2, 2437.

    • Search Google Scholar
    • Export Citation
  • 21.

    Guan, Y. J., Hu, J., Wang, X. J., Shao, C. X. (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ-Sci. B 10, 427433.

    • Search Google Scholar
    • Export Citation
  • 22.

    Hamada, A. M., El-Enany, A. E. (1994) Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant. 36, 7581.

    • Search Google Scholar
    • Export Citation
  • 23.

    Harris, D., Rashid, A., Miraj, G., Arif, M., Shah, H. (2007) On-farm’ seed priming with zinc sulphate solution – A cost-effective way to increase the maize yields of resource poor farmers. Field Crops Res. 102, 119127.

    • Search Google Scholar
    • Export Citation
  • 24.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplast. 1. Kinetics and stiochiometry of fatty acid peroxidation. Arch. Bioch. Biophys. 125, 189198.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hus, J. L., Sung, J. M. (1997) Antioxidant role of glutatnione associated with accelerated agina and hydration of triploid Watermelon seeds. Physiol Plant. 100, 967974.

    • Search Google Scholar
    • Export Citation
  • 26.

    Hussein, M. M., Abd El-Rheem, K. M., Khaled, S. M., Youssef, R. A. (2011) Growth and nutrients status of wheat as affected by ascorbic acid and water salinity. Nature and Science 9, 6469.

    • Search Google Scholar
    • Export Citation
  • 27.

    Jyotsna, V., Srivastava, A. K. (1998) Physiological basis of salt stress resistance in pigeon pea (Cajanuscajan L.)–II. Pre-sowing seed soaking treatment in regulating early seedling metabolism during seed germination. Plant Physiol. Biochem. 25, 8994.

    • Search Google Scholar
    • Export Citation
  • 28.

    Khan, M. A., Ahmed, M. Z., Hameed, A. (2006) Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J. Arid Environ. 67, 535540.

    • Search Google Scholar
    • Export Citation
  • 29.

    Khosravinejad, H. F. R., Farboondia, T. (2008) Effect of salinity on photosynthetic pigments, respiration and water content in barley varieties. Pak. J. Biol. Sci. 11, 24382442.

    • Search Google Scholar
    • Export Citation
  • 30.

    Lima, A. L. S., DaMatta, F. M., Pinheiro, H. A., Totola, M. R., Loureiro, M. E. (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ. Exp. Bot. 47, 239247.

    • Search Google Scholar
    • Export Citation
  • 31.

    Lowery, O. H., Rosebrough, N. H., Farr, A. L., Randall, R. J. (1951) Protein measurements with the folin phenol reagent. J. Biol. Chem. 193, 291297.

    • Search Google Scholar
    • Export Citation
  • 32.

    McDonald, M. B. (1999) Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27, 177237.

  • 33.

    Metzner, H., Rau, H., Senger, H. (1965) Untersuchungen zur synchronisierbarkareit einzelener-pigment. Mangel Mutanten von Chlorella. Planta 65, 186194.

    • Search Google Scholar
    • Export Citation
  • 34.

    Moeinrad, H. (2008) The relationship between some physiological traits and salt tolerance in pistachio genotypes. Desert. 13, 129136.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mohammadi, G. R., Dezfuli, M. P. M., Sharifzadeh, F. (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen. Appl. Plant Physiol. 34, 215226.

    • Search Google Scholar
    • Export Citation
  • 36.

    Moore, S., Stein, W. (1948) Partition chromatography of amino acids on starch. Annual. N.Y. Acad. Sci. 49, 265278.

  • 37.

    Mukherjee, S., Bhattacharyya, P., Duttagupta, A. K. (2004) Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed Lemna minor: field and laboratory studies. Environ Interactions 30, 811814.

    • Search Google Scholar
    • Export Citation
  • 38.

    Munns, R., Brady, C. J., Barlow, E. W. (1979) Solute accumulation in the apex and leaves of wheat during water stress. Aust. Plant Physiol. 6, 379389.

    • Search Google Scholar
    • Export Citation
  • 39.

    OlfaBaatour, R., Kaddour, W., Aidi Wannes, M., Lachaal Marzouk, B. (2009) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol. Plant. 10, 0374-4.

    • Search Google Scholar
    • Export Citation
  • 40.

    Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P. S., Khan, M. A. (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degradation Develop. 19, 429453.

    • Search Google Scholar
    • Export Citation
  • 41.

    Roy, N. K., Srivastava, A. K. (2000) Adverse effect of salt stress conditions on chlorophyll content in wheat (Triticum aestivum L.) leaves and its amelioration through pre-soaking treatments. Indian J. Agric. Sci. 70, 777778.

    • Search Google Scholar
    • Export Citation
  • 42.

    Sallam, H. A. (1999) Effect of some seed-soaking treatments on growth and chemical components of faba bean plants under saline conditions. Ann. Agric. Sci. (Cairo). 44, 159171.

    • Search Google Scholar
    • Export Citation
  • 43.

    Sarkar, R. K., Malik, G. C. (2001) Effect of foliar spray of potassium nitrate and calcium nitrate on grass pea (Lathyrus sativus L.) grown in rice fallows. Lathyrus Lathyrithm Newsletter 2, 4748.

    • Search Google Scholar
    • Export Citation
  • 44.

    Schlegel, H. G. (1956) The recovery of organic acid by Chlorella in the light. Planta 47, 510526.

  • 45.

    Takhti, S., Shekafandeh, A. (2012) Effect of different seed priming on germination rate and seedling growth of Ziziphus Spina-Christi. Adv. Environ. Biol. 6, 159164.

    • Search Google Scholar
    • Export Citation
  • 46.

    Tanksley, S. D., Orton, T. J. (eds) (1983) Isoenzymes in plant genetics and breeding. Part A, Elsevier Amsterdam, New York.

  • 47.

    Wang, Z. Q., Yuan, Y. Z., Ou, J. Q., Lin, Q. H., Zhang, C. F. (2007) Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity, Original Research Article. J. of Plant Physiol. 164, 695701.

    • Search Google Scholar
    • Export Citation
  • 48.

    Wiersma, T. V., Bailey, T. B. (1975) Estimation of leaflet, trifoliate and total leaf area of soybean. Agron. J. 176, 2630.

  • 49.

    Wimmer, M. A., Muhling, K. H., Lauchli, A. (2003) The interaction between salinity and boron toxicity affects the sub cellular distribution of ions and proteins in wheat leaves. Plant Cell Environ. 26, 12671274.

    • Search Google Scholar
    • Export Citation
  • 50.

    Zhou, R., Zhao, H. (2004) Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiol. Plant. 121, 399408.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)