Two broad bean cultivars (Vicia faba CV Nobaria3 and Vicia faba CV Sakha3) were obtained from Mallwi Agriculture Research Center, El Minia Governorate, Egypt. The seeds were divided into two groups, the first group soaked with distilled water, while the second group were soaked with 3 mM KNO3, respectively, for 4 hours. Seeds were sown and left to grow for 3 weeks then treated with different concentrations of NaCl (0.0, 40, 80, 120 and 160 mM) by top irrigation, then they left to grow further for 65 days from sowing. Plant samples were collected for some measurements: leaf area, plant height, root length, fresh and dry weight, photosynthetic pigments, carotenoids, soluble sugars, soluble proteins, total free amino acids, esterase enzyme, as well as MDA (malondialdehyde) content. Salinity reduced both fresh and dry weight in two broad bean cultivars, this reduction were more pronounced in Sakha3 than Nobaria3. Seed pre-soaking with KNO3 resulted in enhancement of fresh and dry weight production in both cultivars especially at 40 mM NaCl. Photosynthetic pigments were substantially affected by salt treatment while the carotenoids were increased, seed pre-soaking with KNO3 improved these components. The soluble sugars, amino acids as well as soluble proteins showed various responses with increasing salinity in the cultivars, seed pre-soaking with KNO3 has improved these parameters to some extent. The shoots of two cultivars exhibited significant accumulation of MDA, compared to roots exposed to the highest salinity levels. Pre-soaking seeds with KNO3 did not improve MDA in shoots but enhanced it in roots, however, in most cases still lower than the absolute control. The assessment of the esterase isozyme profiles on 7.5% native polyacrylamide gel revealed the presence of 13 isoforms in two faba bean plants in response to KNO3 pre-soaking and treatments with different concentrations of NaCl.
Argerich, C. A., Bradford, K. J. (1989) The effects of priming and aging on seed vigour in tomato. J. Exp. Bot. 40, 599–607.
Ashraf, M., Foolad, M. R. (2005) Pre-sowing seed treatment – A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 88, 223–265.
Azooz, M. (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int. J. Agric. and Biol. Engin. 11, 343–350.
Badour, S. S. A. (1959) Analitisch–chemische Untersuchung des Kaliummangels bei Chlorella in Vergleich mit anderen Mangel-Zustanden. Ph.D. Dissertation, Göttingen.
Bajehbaj, A. A. (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr. J. Biotech. 9, 1764–1770.
Bandehagh, A., Salekdeh, G. H., Toorchi, M. (2011) Comparative proteomic analysis of canola leaves under salinity stress’. Proteomics 11, 1965–1975.
Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., Dries, N., Maurel, C. (2005) Early effects of salinity on water transport in Arabidopsis roots: molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790–805.
Bradford, K. J. (1986) Priming to improve germination under stress conditions. Hort. Sci. 21, 1105–1112.
Chandler, P. M., Robertson, M. (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance’. Annu. Rev. Plant Physiol. Plant mol. Biol. 45, 113–141.
Coppens, L., Dewitte, D. (1990) Esterase and peroxidase zymograms from barley (Hordeum vulgare L.) callus as a biochemical marker system of embryogenesis and organogenesis. Plant Science 67, 97–105.
Cosgrove, D. J. (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol. 125, 131–134.
Cummins, I., Burnet, M., Edwards, R. (2001) Biochemical characterization of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiol. Plant. 113, 477–485.
De Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A. (2003) Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Braz. J. Plant Physiol. 15, 113–118.
Demir Kaya, M., Okcu, G., Atak, M., Cikili, Y., Kolsarici, O. (2006) Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus. annuus L.). J. Eur. Agron. 24, 291–295.
Ebrahim, M. K. (2005) Amelioration of sucrose-metabolism and yield changes, in storage roots of NaCl-stressed sugar beet, by ascorbic acid. Agrochimica, XLІX (3–4), 93–103.
Fales, F. W. (1951) The assimilation and degradation of carbohydrates by yeast cells. J. Biol. Chem. 193, 113–124.
FAO (2008) FAO Land and Plant Nutrition Management Service. http://www.fao.org/agl/agll/spush.
Gadallah, M. A. (1999) Effects of proline and glycinebetaine on Vicia faba in response to salt stress. Biol. Plant 42, 249–257.
Gao, Y. P., Young, L., Bonham-Smith, P., Gusta, L. V. (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol. Biol. 40, 635–644.
Gigova, L., Gacheva, G., Ivanova, N., Pilarski, P. (2012) Effects of temperature on synechocystis sp. r10 (cyanoprokaryota) at two irradiance levels. i. effect on growth, biochemical composition and defense enzyme activities. Gen. Plant Physiol. V2, 24–37.
Guan, Y. J., Hu, J., Wang, X. J., Shao, C. X. (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ-Sci. B 10, 427–433.
Hamada, A. M., El-Enany, A. E. (1994) Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant. 36, 75–81.
Harris, D., Rashid, A., Miraj, G., Arif, M., Shah, H. (2007) On-farm’ seed priming with zinc sulphate solution – A cost-effective way to increase the maize yields of resource poor farmers. Field Crops Res. 102, 119–127.
Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplast. 1. Kinetics and stiochiometry of fatty acid peroxidation. Arch. Bioch. Biophys. 125, 189–198.
Hus, J. L., Sung, J. M. (1997) Antioxidant role of glutatnione associated with accelerated agina and hydration of triploid Watermelon seeds. Physiol Plant. 100, 967–974.
Hussein, M. M., Abd El-Rheem, K. M., Khaled, S. M., Youssef, R. A. (2011) Growth and nutrients status of wheat as affected by ascorbic acid and water salinity. Nature and Science 9, 64–69.
Jyotsna, V., Srivastava, A. K. (1998) Physiological basis of salt stress resistance in pigeon pea (Cajanuscajan L.)–II. Pre-sowing seed soaking treatment in regulating early seedling metabolism during seed germination. Plant Physiol. Biochem. 25, 89–94.
Khan, M. A., Ahmed, M. Z., Hameed, A. (2006) Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J. Arid Environ. 67, 535–540.
Khosravinejad, H. F. R., Farboondia, T. (2008) Effect of salinity on photosynthetic pigments, respiration and water content in barley varieties. Pak. J. Biol. Sci. 11, 2438–2442.
Lima, A. L. S., DaMatta, F. M., Pinheiro, H. A., Totola, M. R., Loureiro, M. E. (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ. Exp. Bot. 47, 239–247.
Lowery, O. H., Rosebrough, N. H., Farr, A. L., Randall, R. J. (1951) Protein measurements with the folin phenol reagent. J. Biol. Chem. 193, 291–297.
McDonald, M. B. (1999) Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27, 177–237.
Metzner, H., Rau, H., Senger, H. (1965) Untersuchungen zur synchronisierbarkareit einzelener-pigment. Mangel Mutanten von Chlorella. Planta 65, 186–194.
Moeinrad, H. (2008) The relationship between some physiological traits and salt tolerance in pistachio genotypes. Desert. 13, 129–136.
Mohammadi, G. R., Dezfuli, M. P. M., Sharifzadeh, F. (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen. Appl. Plant Physiol. 34, 215–226.
Moore, S., Stein, W. (1948) Partition chromatography of amino acids on starch. Annual. N.Y. Acad. Sci. 49, 265–278.
Mukherjee, S., Bhattacharyya, P., Duttagupta, A. K. (2004) Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed Lemna minor: field and laboratory studies. Environ Interactions 30, 811–814.
Munns, R., Brady, C. J., Barlow, E. W. (1979) Solute accumulation in the apex and leaves of wheat during water stress. Aust. Plant Physiol. 6, 379–389.
OlfaBaatour, R., Kaddour, W., Aidi Wannes, M., Lachaal Marzouk, B. (2009) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol. Plant. 10, 0374-4.
Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P. S., Khan, M. A. (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degradation Develop. 19, 429–453.
Roy, N. K., Srivastava, A. K. (2000) Adverse effect of salt stress conditions on chlorophyll content in wheat (Triticum aestivum L.) leaves and its amelioration through pre-soaking treatments. Indian J. Agric. Sci. 70, 777–778.
Sallam, H. A. (1999) Effect of some seed-soaking treatments on growth and chemical components of faba bean plants under saline conditions. Ann. Agric. Sci. (Cairo). 44, 159–171.
Sarkar, R. K., Malik, G. C. (2001) Effect of foliar spray of potassium nitrate and calcium nitrate on grass pea (Lathyrus sativus L.) grown in rice fallows. Lathyrus Lathyrithm Newsletter 2, 47–48.
Schlegel, H. G. (1956) The recovery of organic acid by Chlorella in the light. Planta 47, 510–526.
Takhti, S., Shekafandeh, A. (2012) Effect of different seed priming on germination rate and seedling growth of Ziziphus Spina-Christi. Adv. Environ. Biol. 6, 159–164.
Tanksley, S. D., Orton, T. J. (eds) (1983) Isoenzymes in plant genetics and breeding. Part A, Elsevier Amsterdam, New York.
Wang, Z. Q., Yuan, Y. Z., Ou, J. Q., Lin, Q. H., Zhang, C. F. (2007) Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity, Original Research Article. J. of Plant Physiol. 164, 695–701.
Wiersma, T. V., Bailey, T. B. (1975) Estimation of leaflet, trifoliate and total leaf area of soybean. Agron. J. 176, 26–30.
Wimmer, M. A., Muhling, K. H., Lauchli, A. (2003) The interaction between salinity and boron toxicity affects the sub cellular distribution of ions and proteins in wheat leaves. Plant Cell Environ. 26, 1267–1274.
Zhou, R., Zhao, H. (2004) Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiol. Plant. 121, 399–408.