View More View Less
  • 1 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • 2 Mycological Research Center of Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
Restricted access

Endophytic phosphorus- and potassium-solubilizing bacteria were screened from the root, rhizome, stem, and leaves of Moso Bamboo, and their diversity was analyzed using their 16S rDNA sequences. Twenty endophytic phosphorus and potassium-solubilizing bacteria were screened from 82 bamboo plants, among which the CT-B09-2, WYS-A01-1 and JL-B06 had higher activities in decomposing organophosphates. The three species showed a decomposition diameter/colony diameter (D/d) of 5.05, 4.19 and 2.95, respectively, and a solubilizing activity of 81.77 mg/L, 77.85 mg/L and 63.69 mg/L, respectively. JL-B06, WYS-A01-1 and CT-B09-2 had higher activities in decomposing inorganic phosphorus, with a decomposition diameter/colony diameter (D/d) of 2.34, 2.12 and 1.82, respectively, and a solubilizing activity of 30.58 mg/L, 38.89 mg/L and 48.35 mg/L, respectively. CT-B21, WYS-A03-1 and JL-B06 had higher activities in decomposing potassium, with a decomposition diameter/colony diameter (D/d) of 3.37, 4.84 and 4.33, respectively, and a solubilizing activity of 2.81 mg/L, 2.54 mg/L and 2.46 mg/L, respectively. The 16S rDNA sequence analysis showed that the 20 phosphorus- and potassium-solubilizing bacteria belong to 14 species from 10 genera, and mainly consist of Alcaligenes spp., Enterobacter spp. and Bacillus spp. Our results demonstrate the abundant diversity of endophytic phosphorus- and potassiumsolubilizing bacteria in Moso Bamboo.

  • 1.

    Basak, B. B., Biswas, D. R. (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil. 317, 235255.

    • Search Google Scholar
    • Export Citation
  • 2.

    Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., Hallmann, J. (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51, 215229.

    • Search Google Scholar
    • Export Citation
  • 3.

    Gao, Z. Q., Fu, M. Y. (2006) Characteristics of seasonal changes in soil carbon and nitrogen nutrients of different Phyllostachys pubescens stands. J. Zhejiang Coll. Forest. 23, 248254.

    • Search Google Scholar
    • Export Citation
  • 4.

    Gaulner, J. M., Feldman, A. W., Zablotowiez, R. M. (1982) Identity and behavior of xylem-residing bacteria rough lemon of florida citrus trees. Appl. Environ. Microb. 43, 13351342.

    • Search Google Scholar
    • Export Citation
  • 5.

    Goenadi, D. H., Siswanto, S. Y. (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci. Soc. Am. J. 64, 927932.

    • Search Google Scholar
    • Export Citation
  • 6.

    Gothwal, R. K., Nigam, V. K., Mohanl, M. K., Samal, D., Ghosh, P. (2006) Phosphate solubilization by rhizospheric bacterial isolates from economically important desert plants. Indian J. Microb. 46, 355361.

    • Search Google Scholar
    • Export Citation
  • 7.

    Han, H. S., Lee, K. D. (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res. J. Agri. Bio. Sci. 1, 176180.

    • Search Google Scholar
    • Export Citation
  • 8.

    Han, S., Xia, D. L., Li, L. B., Han, J. G. (2010) Diversity of the phosphate solubilizing bacteria isolated fromthe root of Phyllostachys pubescens. J. Agricul. Univer. Hebei. 33, 2631.

    • Search Google Scholar
    • Export Citation
  • 9.

    Huang, Q. T., Chen, A. L., He, J. (2006) Comparison of soil physical and chemical properties among various Phyllostachys pubescens plantation. J. Fujian Coll. Forest. 26, 299302.

    • Search Google Scholar
    • Export Citation
  • 10.

    Illmer, P., Schinner, F. (1992) Solubilization of inorganic phosphates by microorganism isolated from forest siol. Soil. Biol. Biochem. 24, 389395.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ivanova, R., Bojinova, D., Nedialkova, K. (2006) Rock phosphate solubilization by soil bacteria. J. Univ. Chem. Tech. Metall. 41, 297302.

    • Search Google Scholar
    • Export Citation
  • 12.

    Jha, B. K., Gandhi Pragash, M., Cletus, J., Raman, G., Sakthivel, N. (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J. Microbiol. Biotechnol. 25, 573581.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kucey, R. M. N. (1988) Effect of penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Can. J. siol Sci. 68, 261270.

    • Search Google Scholar
    • Export Citation
  • 14.

    Loveleen, R., Pankaj, K., Sudhakara, M. R. (2008) Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr. Microbiol. 57, 401406.

    • Search Google Scholar
    • Export Citation
  • 15.

    Lu, L. K. (1999) Soil Agricultural Chemical Analysis Method. Chinese agricultural Science and technology Press, Beijing.

  • 16.

    Mano, H., Tanaka, F., Watanabe, A., Kaga, H., Okunishi, S., Morisaki, H. (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microb. Environ. 21, 86100.

    • Search Google Scholar
    • Export Citation
  • 17.

    Mathurot, C., Saisamorn, L. (2009) Phosphate solubilization potential and stress tolerance of rhizbacteria from rice soil in Northern Thailand. World J. Microbiol. Biotechnol. 25, 305314.

    • Search Google Scholar
    • Export Citation
  • 18.

    Naik, P. R., Raman, G., Narayanan, K. B., Sakthivel, N. (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 8, 230243.

    • Search Google Scholar
    • Export Citation
  • 19.

    Nautiyal, C. S., Bhadauria, S. S., Kumar, P., Lal, H., Mondal, R., Verma, D. (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182, 291296.

    • Search Google Scholar
    • Export Citation
  • 20.

    Oliveira, C. A., Alves, V. M. C., Marriel, I. E., Gomes, E. A., Scotti, M. R., Carneiro, N. P., Guimaraes, C. T., Schaffert, R. E., Sa, N. M. H. (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol. Biochem. 41, 17821787.

    • Search Google Scholar
    • Export Citation
  • 21.

    Pandey, A., Trivedi, P., Kumar, B., Palni, L. M. (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr. Microbiol. 53, 102107.

    • Search Google Scholar
    • Export Citation
  • 22.

    Rashid, M., Khalil, S., Ayub, N., Alam, S., Latif, F. (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak. J. Biol. Sci. 7, 187196.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., Dowling, D. N. (2008) Bacterial endophytes:recent developments and application. FEMS Microbiol. Lett. 278, l9.

    • Search Google Scholar
    • Export Citation
  • 24.

    Selvarajm, P., Munusamy, M., Tongmin, S. (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18, 773777.

    • Search Google Scholar
    • Export Citation
  • 25.

    Souchie, E. L., Abboud, A. C. D. (2007) Phosphate solubilization by microorganisms from the rhizosphere of Pigeonpea genotypes grown in different soil classes. Semina-Ciencias Agrarias 28, 1118.

    • Search Google Scholar
    • Export Citation
  • 26.

    Sridevi, M., Mallaiah, K. V. (2009) Phosphate solubilization by rhizobium strains. Indian J. Microbiol. 149, 98102.

  • 27.

    Wang, G. H., Zhou, D. R., Yang, Q., Jin, J., Liu, X. B. (2005) Solubilization of rock phosphate in liquid culture by fungal isolates from rhizosphere soil. Pedosphere 15, 532538.

    • Search Google Scholar
    • Export Citation
  • 28.

    Xu, Y. J. (2011) Research progress on pesources diversity of plant endophytes. Guangdong Agricul. Sci. 4, 149152.

  • 29.

    Zhang, L. Z., Fan, J. J., Niu, W., Li, T., Wu, R. H., Jin, Y. J. (2011) Isolation of phosphate solubilizing fungus (Aspergillus niger) from Caragana rhizosphere and its potential for phosphate solubilization. Acta. Ecol. Sin. 31, 75717578.

    • Search Google Scholar
    • Export Citation
  • 30.

    Zhao, X. R., Lin, Q. M., Sun, Y. X., Yao, J., Zhang, Y. S. (2001) The methods for quantifying capacity of bacteria in dissolving P compounds. Microbiology 28, 14.

    • Search Google Scholar
    • Export Citation