The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm−1 of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions.
Agarwal, S., Pandey, V. (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol. Plant. 48, 555–560.
Ashraf, M. A., Ashraf, M., Ali, Q. (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak. J. Bot. 42, 559–565.
Ashraf, M., Foolad, M. R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216.
Azevedo Neto, A. D., Prico, J. T., Eneas-Filho, J., Braga de Abreu, C. E., Gomes-Filho, E. (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 235–241.
Bates, L. S., Waldreman, R. P., Teare I. D. (1973) Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207.
Becana, M., Dalton, D. A., Moran, J. F., Iturbe-Ormaetxe, I., Matamoros, M. A., Rubio, M. C. (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant. 109, 372–381.
Bourgou, S., Kchouk, M. E., Bellila, A., Marzouk, B. (2010) Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Hortic. 853, 57–60.
Bradford, M. M. (1976) A Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
Buchanan, B. B., Gruissem, W., Jones, R. (2000) Biochemistry and Molecular Biology of Plants. The American Society of Plant Physiologists. USA. Maryland.
Chalker-Scott, L. (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv. Bot. Res. 37, 103–127.
Chance, B., Maehly, A. C. (1955) Assay of catalase and peroxidises, Method Enzymol. 2, 764–775.
Chaparzadeh, N., D’Amico, M. L., Khavari-Nejad, R. A., Navari-Izzo, F. (2004) Antioxidative responses of Calandula officinalis under salinity conditions. Plant Physiol. Biochem. 42, 695–701.
Dai, L. P., Xiong, Z. T., Huang, Y., Li, M. J. (2006) Cadmium-induced changes in pigments, total phenolics and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ. Toxicol. 21, 505–512.
Daiponmak, W., Theerakulpisutb, P., Thanonkaoc Vanavichitd A., Prathephaa, P. (2010) Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Sci. Asia 36, 286–291.
Dazy, M., Jung, V., Férard, J., Masfaraud, J. (2008) Ecological recovery of vegetation on a cokefactory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere 74, 57–63.
Fathiazad, F., Hamedeyazdan, S. (2011) A review on Hyssopus officinalis L.: Composition and biological activities. Afr. J. Pharm. Pharmacol. 5, 1959–1966.
Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., Chen, F. (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ. 54, 374–381.
Giannopolitis, C. N., Reis, S. K. (1977) Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314.
Harborne, J. B., Williams, C. A. (2000) Review: Advances in flavonoid research science 1992. J. Phytochem. 55, 481–504.
Iqbal, M., Ashraf, M. (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J. Integr. Plant Biol. 48, 181–189.
Jaleel, C., Gopi, R. (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol. Plant. 29, 205–209.
Jayasinghe, C., Gotoh, N., Aoki, T., Wada, S. (2003) Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 51, 4442–4449.
Kizil, S., Toncer, O., Ipek, A., Arslan, N., Saglam S., Khawar, K. M. (2008) Blooming stages of Turkish hyssop (Hyssopus officinalis L.) affect essential oil composition. Acta Agric. Scand, Sect. B. 58, 273–279.
Koca, H., Bor, M., Özdemir, F., Türkan, I. (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60, 344–351.
Lavid, N., Schwartz, A., Lewinsohn E., Tel-Or, E. (2001) Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta 214, 189–195.
Miller, G. A. D., Suzuki, N., Ciftci-Yilmaz, S. U. L. T. A. N., Mittler, R. O. N. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant cell environ. 33, 453–467.
Nayyar, H., Gupta, D. (2006) Differential sensitivity of C3 and D4 plants to water deficit stress: Association with oxidative stress and antioxidant. Environ. Exp. Bot. 58, 106–113.
Parida, A. K., Das, A. B. (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Safe. 60, 324–349.
Parida, A., Das, A. B., Sanada, Y., Mohanty, P. (2004) Effects of salinity on biochemical components of the mangrove Aegiceras corniculatum. Aquat. Bot. 80, 77–87.
Passardi, F., Cosio, C., Penel, C., Dunand, C. (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 24, 255–265.
Queslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., Lachaal, M. (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 32, 289–296.
Roitto, M., Rautio, P., Julkunen-Tiitto, R., Kukkola, E., Huttunen, S. (2005) Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper. Environ. pollut. 137, 603–609.
Sadder, M. T., Anwar, F., Al-Doss, A. A. (2013) Gene expression and physiological analysis of Atriplex halimus (L.) under salt stress. Aust. J. Crop Sci. 7, 112–118.
Singleton, U. L., Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolybdic-posphotungustic acid reagent. Am. J. Enol. Vitic. 16, 144–158.
Sudhaker, C. H., Lakshmi, A., Giridarakumar, S. (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161, 613–619.
Tereshchenko, O. Y., Gordeeva, E. I., Arbuzova, V. S., Khlestkina, E. K. (2012) Anthocyanin pigmentation in Triticum aestivum L.: Genetc basis and role under abiotic stress conditions. J. Stress Physiol. Biochem. 8, pp.16.
Verbruggen N. , Hermans, C. (2008) Proline accumulation in plants, Amino acids 35, 753–759.
Verdoy, D., De La Peña, T. C., Redondo, F. J., Lucas, M. M., Pueyo, J. J. (2006) Transgenic Medicago Truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ. 29, 1913–1923.
Wolski, T., Baj, T., Kwiatkowski, S. (2006) Hyzop lekarski (Hyssopus officinalis L.) zapomniana roslina lecznicza, przyprawowa oraz miododajna. Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia. 61, 1–10.
Yazici, I., Türkan I., Sekmen, A. H., Demiral, T. (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 61, 49–57.
Zheljazkov, V. D., Astatkie, T. Hristov, A. N. (2012) Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind. Crops Prod. 36, 222–228.
Zhu, H., Chen, X., Pan, X., Zhang, D. (2011) Effects of chloramphenicol on pigmentation, proline accumulation and chlorophyll fluorescence of maize (Zea mays) seedlings. Int. J. Agric. Biol. 13, 677–682.