View More View Less
  • 1 Chinese Academy of Sciences, Beijing 100101, China
Restricted access

The housefly is an important resource insect and the housefly larvae are ideal source of food additives. The housefly larvae protein hydrolysates were obtained by enzymatic hydrolysis by alcalase and neutral proteinase. Their antioxidant activities were investigated, including the superoxide and hydroxyl radicalscavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, reducing power and metal chelating activity. The antioxidant activities of both hydrolysates increased with their increasing concentrations. The alcalase hydrolysate (AH) showed higher scavenging activities against hydroxyl radical and superoxide anion radical at low concentrations and higher metal-chelating activity than the neutral proteinase hydrolysate (NPH). The NPH exhibited higher scavenging activity against DPPH free radical and higher reducing power than the AH. Both hydrolysates showed more than 50% superoxide anion radical-scavenging activity at 10 μg/mL. These results indicate that both housefly larvae protein hydrolysates display high antioxidant activities and they could serve as potential natural antioxidant food additives.

  • 1.

    Beckman, K. B., Ames, B. N. (1998) The free radical theory of aging matures. Physiol. Rev. 78, 547-581.

  • 2.

    Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., Kowall, N. (1996) Oxidative damage in Alzheimer’s. Nature 382, 20-121.

    • Search Google Scholar
    • Export Citation
  • 3.

    Lin, C. C., Liang, J. H. (2002) Effect of antioxidants on the oxidative stability of chicken breast meat in a dispersion system. J. Food Sci. 687, 530-533.

    • Search Google Scholar
    • Export Citation
  • 4.

    Wang, B., Pace, R. D., Dessai, A. P., Bovell-Benjamin, A., Phillips, B. (2002) Modified extraction method for determining 2-thiobarbituric acid values in meat with increased specificity and simplicity. J. Food Sci. 67, 2833-2836.

    • Search Google Scholar
    • Export Citation
  • 5.

    Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M. (2002) Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 50, 1619-1624.

    • Search Google Scholar
    • Export Citation
  • 6.

    Quian, Z., Jung, W., Kim, S. (2008) Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeina Shaw. Bioresour. Technol. 99, 1690-1698.

    • Search Google Scholar
    • Export Citation
  • 7.

    Giménez, B., Alemán, A., Montero, P., Gómez-Guillén, M. C. (2009) Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem. 114, 976-983.

    • Search Google Scholar
    • Export Citation
  • 8.

    Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F. (2007) Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102, 1317-1327.

    • Search Google Scholar
    • Export Citation
  • 9.

    Sakanaka, S., Tachibana, Y., Ishihara, N., Juneja, L. J. (2004) Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system. Food Chem. 86, 99-103.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wang, H., Gao, X. D., Zhou, G. C., Cai, L., Yao, W. B. (2008) In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chem. 106, 888-895.

    • Search Google Scholar
    • Export Citation
  • 11.

    Yu, H. H., Liu, X. G., Xing, R., Liu, S., Guo, Z. Y., Wang, P. B., Li, C. P., Li, P. C. (2006) In vitro determination of antioxidant activity of proteins from jellyfish Rhopilema esculentum. Food Chem. 95, 123130.

    • Search Google Scholar
    • Export Citation
  • 12.

    Zhu, K. X., Zhou, H. M., Qian, H. F. (2006) Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process. Biochem. 471, 12961302.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hao, Y. J., Jing, Y. J., Qu, H., Li, D. S., Du, R. Q. (2008) Purification and characterization of a thermal stable antimicrobial protein from housefly larvae, Musca domestica, induced by ultrasonic wave. Acta Biol. Hung. , 289304.

    • Search Google Scholar
    • Export Citation
  • 14.

    Jing, Y. J., Hao, Y. J., Qu, H., Shan, Y., Li, D. S., Du, R. Q. (2007) Studies on the antibacterial activities and mechanisms of chitosan obtained from cuticles of housefly larvae. Acta Biol. Hung. 58, 7586.

    • Search Google Scholar
    • Export Citation
  • 15.

    Ai, H., Wang, F. R., Yang, Q. S., Zhu, F., Lei, C. L. (2008) Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica. Carbohydr. Polym. 72, 419423.

    • Search Google Scholar
    • Export Citation
  • 16.

    Hou, L. X., Shi, Y. H., Zhai, P., Le, G. W. (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J. Ethnopharmacol. 111, 227231.

    • Search Google Scholar
    • Export Citation
  • 17.

    Schägger, H. (2006) Tricine-SDS-PAGE. Nat. Protoc. 1, 1622.

  • 18.

    Moore, S. (1963) On the determination of cystine and cysteic acid. J. Biol. Chem. 238, 235237.

  • 19.

    Halliwell, B., Gutteridge, J. M. C., Aruoma, O. I. (1987) The deoxyribose method: A simple “testtube” assay for determination of rate constants for reactions of hydroxyl radical. Anal. Biochem. 165, 215219.

    • Search Google Scholar
    • Export Citation
  • 20.

    Oyaizu, M. (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jap. J. Nutr. 44, 307315.

    • Search Google Scholar
    • Export Citation
  • 21.

    Decker, E. A., Welch, B. (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38, 674677.

  • 22.

    Chen, H. M., Muramoto, K., Yamauchi, F., Nokihara K. (1996) Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44, 26192623.

    • Search Google Scholar
    • Export Citation
  • 23.

    Kim, S. K., Kim, Y. T., Byun, H. G., Nam, K. S., Joo, D. S., Shahidi, F. (2001) Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem. 49, 19841989.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mendis, E., Rajapakse, N., Byun, H. G., Kim, S. K. (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 70, 21662178.

    • Search Google Scholar
    • Export Citation
  • 25.

    Aruoma, O. I. (1998) Free radicals oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199211.

  • 26.

    Aurand, L. W., Boonme, N. H., Gidding, G. G. (1977) Superoxide and singlet oxygen in milk lipid peroxidation. J. Dairy Sci. 60, 363369.

    • Search Google Scholar
    • Export Citation
  • 27.

    Gülçin, Ì. , Sat, I. G., Beydemir, S., Elmastas, M., Küfrevioglu, Ö. I. (2004) Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 87, 393400.

    • Search Google Scholar
    • Export Citation
  • 28.

    Mokbel, M. S., Hashinaga, F. (2006) Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem. 94, 529534.

    • Search Google Scholar
    • Export Citation
  • 29.

    Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. (1992) Antioxidative properties of xanthan on the antioxidation of soy bean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945948.

    • Search Google Scholar
    • Export Citation
  • 30.

    Wang, Y. G., Zhu, F. R., Han, F. S., Wang, H. Y. (2008) Purification and characterization of antioxidative peptides from salmon protamine hydrolysate. J. Food Biochem. 32, 654671.

    • Search Google Scholar
    • Export Citation
  • 31.

    Saiga, A., Tanabe, S., Nishimura, T. (2003) Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51, 36613667.

    • Search Google Scholar
    • Export Citation
  • 32.

    Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., Yang, H. (2008) Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 107, 14851493.

    • Search Google Scholar
    • Export Citation
  • 33.

    Samaranayaka, A. G. P., Li-Chan, E. C. Y. (2008) Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107, 768776.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nalinanon, S., Benjakul, S., Kishimura, H., Shahidi, F. (2011) Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 124, 13541362.

    • Search Google Scholar
    • Export Citation